MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phicl2 Structured version   Unicode version

Theorem phicl2 13964
Description: Bounds and closure for the value of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phicl2  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )

Proof of Theorem phicl2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 phival 13963 . 2  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
2 fzfi 11914 . . . . . . 7  |-  ( 1 ... N )  e. 
Fin
3 ssrab2 3548 . . . . . . 7  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... N )
4 ssfi 7647 . . . . . . 7  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N ) )  ->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin )
52, 3, 4mp2an 672 . . . . . 6  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin
6 hashcl 12246 . . . . . 6  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin  ->  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e. 
NN0 )
75, 6ax-mp 5 . . . . 5  |-  ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  NN0
87nn0zi 10785 . . . 4  |-  ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ
98a1i 11 . . 3  |-  ( N  e.  NN  ->  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ZZ )
10 1z 10790 . . . . 5  |-  1  e.  ZZ
11 hashsng 12256 . . . . 5  |-  ( 1  e.  ZZ  ->  ( # `
 { 1 } )  =  1 )
1210, 11ax-mp 5 . . . 4  |-  ( # `  { 1 } )  =  1
13 ovex 6228 . . . . . . 7  |-  ( 1 ... N )  e. 
_V
1413rabex 4554 . . . . . 6  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  _V
15 eluzfz1 11578 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
16 nnuz 11010 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1715, 16eleq2s 2562 . . . . . . . 8  |-  ( N  e.  NN  ->  1  e.  ( 1 ... N
) )
18 nnz 10782 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
19 1gcd 13842 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
1  gcd  N )  =  1 )
2018, 19syl 16 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  gcd  N )  =  1 )
21 oveq1 6210 . . . . . . . . . 10  |-  ( x  =  1  ->  (
x  gcd  N )  =  ( 1  gcd 
N ) )
2221eqeq1d 2456 . . . . . . . . 9  |-  ( x  =  1  ->  (
( x  gcd  N
)  =  1  <->  (
1  gcd  N )  =  1 ) )
2322elrab 3224 . . . . . . . 8  |-  ( 1  e.  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  <->  ( 1  e.  ( 1 ... N )  /\  (
1  gcd  N )  =  1 ) )
2417, 20, 23sylanbrc 664 . . . . . . 7  |-  ( N  e.  NN  ->  1  e.  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )
2524snssd 4129 . . . . . 6  |-  ( N  e.  NN  ->  { 1 }  C_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
26 ssdomg 7468 . . . . . 6  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  _V  ->  ( { 1 }  C_  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 }  ->  { 1 }  ~<_  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } ) )
2714, 25, 26mpsyl 63 . . . . 5  |-  ( N  e.  NN  ->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
28 snfi 7503 . . . . . 6  |-  { 1 }  e.  Fin
29 hashdom 12263 . . . . . 6  |-  ( ( { 1 }  e.  Fin  /\  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin )  ->  ( ( # `  { 1 } )  <_  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
3028, 5, 29mp2an 672 . . . . 5  |-  ( (
# `  { 1 } )  <_  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <->  { 1 }  ~<_  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )
3127, 30sylibr 212 . . . 4  |-  ( N  e.  NN  ->  ( # `
 { 1 } )  <_  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
3212, 31syl5eqbrr 4437 . . 3  |-  ( N  e.  NN  ->  1  <_  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
33 ssdomg 7468 . . . . . 6  |-  ( ( 1 ... N )  e.  _V  ->  ( { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N )  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N ) ) )
3413, 3, 33mp2 9 . . . . 5  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... N )
35 hashdom 12263 . . . . . 6  |-  ( ( { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 }  e.  Fin  /\  (
1 ... N )  e. 
Fin )  ->  (
( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... N ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... N
) ) )
365, 2, 35mp2an 672 . . . . 5  |-  ( (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... N ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... N
) )
3734, 36mpbir 209 . . . 4  |-  ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  ( # `  (
1 ... N ) )
38 nnnn0 10700 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
39 hashfz1 12237 . . . . 5  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
4038, 39syl 16 . . . 4  |-  ( N  e.  NN  ->  ( # `
 ( 1 ... N ) )  =  N )
4137, 40syl5breq 4438 . . 3  |-  ( N  e.  NN  ->  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N )
42 elfz1 11562 . . . 4  |-  ( ( 1  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  e.  ( 1 ... N )  <->  ( ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ZZ  /\  1  <_ 
( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  /\  ( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_  N ) ) )
4310, 18, 42sylancr 663 . . 3  |-  ( N  e.  NN  ->  (
( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N
)  <->  ( ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  e.  ZZ  /\  1  <_  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  /\  ( # `  { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 } )  <_  N )
) )
449, 32, 41, 43mpbir3and 1171 . 2  |-  ( N  e.  NN  ->  ( # `
 { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  e.  ( 1 ... N
) )
451, 44eqeltrd 2542 1  |-  ( N  e.  NN  ->  ( phi `  N )  e.  ( 1 ... N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 965    = wceq 1370    e. wcel 1758   {crab 2803   _Vcvv 3078    C_ wss 3439   {csn 3988   class class class wbr 4403   ` cfv 5529  (class class class)co 6203    ~<_ cdom 7421   Fincfn 7423   1c1 9397    <_ cle 9533   NNcn 10436   NN0cn0 10693   ZZcz 10760   ZZ>=cuz 10975   ...cfz 11557   #chash 12223    gcd cgcd 13811   phicphi 13960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-sup 7805  df-card 8223  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-n0 10694  df-z 10761  df-uz 10976  df-rp 11106  df-fz 11558  df-seq 11927  df-exp 11986  df-hash 12224  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-dvds 13657  df-gcd 13812  df-phi 13962
This theorem is referenced by:  phicl  13965  phi1  13969
  Copyright terms: Public domain W3C validator