MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phibnd Unicode version

Theorem phibnd 13115
Description: A slightly tighter bound on the value of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibnd  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  <_  ( N  -  1 ) )

Proof of Theorem phibnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fzfi 11266 . . . 4  |-  ( 1 ... ( N  - 
1 ) )  e. 
Fin
2 phibndlem 13114 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
3 ssdomg 7112 . . . 4  |-  ( ( 1 ... ( N  -  1 ) )  e.  Fin  ->  ( { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... ( N  -  1 ) )  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... ( N  - 
1 ) ) ) )
41, 2, 3mpsyl 61 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... ( N  - 
1 ) ) )
5 fzfi 11266 . . . . 5  |-  ( 1 ... N )  e. 
Fin
6 ssrab2 3388 . . . . 5  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... N )
7 ssfi 7288 . . . . 5  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N ) )  ->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin )
85, 6, 7mp2an 654 . . . 4  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin
9 hashdom 11608 . . . 4  |-  ( ( { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 }  e.  Fin  /\  (
1 ... ( N  - 
1 ) )  e. 
Fin )  ->  (
( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... ( N  - 
1 ) ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... ( N  -  1 ) ) ) )
108, 1, 9mp2an 654 . . 3  |-  ( (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... ( N  - 
1 ) ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... ( N  -  1 ) ) )
114, 10sylibr 204 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  <_  ( # `  (
1 ... ( N  - 
1 ) ) ) )
12 eluz2b2 10504 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
1312simplbi 447 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
14 phival 13111 . . 3  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
1513, 14syl 16 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
16 nnm1nn0 10217 . . . 4  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
17 hashfz1 11585 . . . 4  |-  ( ( N  -  1 )  e.  NN0  ->  ( # `  ( 1 ... ( N  -  1 ) ) )  =  ( N  -  1 ) )
1813, 16, 173syl 19 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( # `  (
1 ... ( N  - 
1 ) ) )  =  ( N  - 
1 ) )
1918eqcomd 2409 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  =  ( # `  (
1 ... ( N  - 
1 ) ) ) )
2011, 15, 193brtr4d 4202 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  <_  ( N  -  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   {crab 2670    C_ wss 3280   class class class wbr 4172   ` cfv 5413  (class class class)co 6040    ~<_ cdom 7066   Fincfn 7068   1c1 8947    < clt 9076    <_ cle 9077    - cmin 9247   NNcn 9956   2c2 10005   NN0cn0 10177   ZZ>=cuz 10444   ...cfz 10999   #chash 11573    gcd cgcd 12961   phicphi 13108
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-phi 13110
  Copyright terms: Public domain W3C validator