MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phibnd Structured version   Unicode version

Theorem phibnd 14312
Description: A slightly tighter bound on the value of the Euler  phi function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibnd  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  <_  ( N  -  1 ) )

Proof of Theorem phibnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fzfi 12084 . . . 4  |-  ( 1 ... ( N  - 
1 ) )  e. 
Fin
2 phibndlem 14311 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
3 ssdomg 7580 . . . 4  |-  ( ( 1 ... ( N  -  1 ) )  e.  Fin  ->  ( { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... ( N  -  1 ) )  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... ( N  - 
1 ) ) ) )
41, 2, 3mpsyl 63 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  ~<_  ( 1 ... ( N  - 
1 ) ) )
5 fzfi 12084 . . . . 5  |-  ( 1 ... N )  e. 
Fin
6 ssrab2 3581 . . . . 5  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... N )
7 ssfi 7759 . . . . 5  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... N ) )  ->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  e.  Fin )
85, 6, 7mp2an 672 . . . 4  |-  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  e.  Fin
9 hashdom 12449 . . . 4  |-  ( ( { x  e.  ( 1 ... N )  |  ( x  gcd  N )  =  1 }  e.  Fin  /\  (
1 ... ( N  - 
1 ) )  e. 
Fin )  ->  (
( # `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... ( N  - 
1 ) ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... ( N  -  1 ) ) ) )
108, 1, 9mp2an 672 . . 3  |-  ( (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } )  <_ 
( # `  ( 1 ... ( N  - 
1 ) ) )  <->  { x  e.  (
1 ... N )  |  ( x  gcd  N
)  =  1 }  ~<_  ( 1 ... ( N  -  1 ) ) )
114, 10sylibr 212 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } )  <_  ( # `  (
1 ... ( N  - 
1 ) ) ) )
12 eluz2nn 11144 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
13 phival 14308 . . 3  |-  ( N  e.  NN  ->  ( phi `  N )  =  ( # `  {
x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } ) )
1412, 13syl 16 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  =  (
# `  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 } ) )
15 nnm1nn0 10858 . . . 4  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
16 hashfz1 12421 . . . 4  |-  ( ( N  -  1 )  e.  NN0  ->  ( # `  ( 1 ... ( N  -  1 ) ) )  =  ( N  -  1 ) )
1712, 15, 163syl 20 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( # `  (
1 ... ( N  - 
1 ) ) )  =  ( N  - 
1 ) )
1817eqcomd 2465 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  =  ( # `  (
1 ... ( N  - 
1 ) ) ) )
1911, 14, 183brtr4d 4486 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( phi `  N )  <_  ( N  -  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1395    e. wcel 1819   {crab 2811    C_ wss 3471   class class class wbr 4456   ` cfv 5594  (class class class)co 6296    ~<_ cdom 7533   Fincfn 7535   1c1 9510    <_ cle 9646    - cmin 9824   NNcn 10556   2c2 10606   NN0cn0 10816   ZZ>=cuz 11106   ...cfz 11697   #chash 12407    gcd cgcd 14155   phicphi 14305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-card 8337  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-fz 11698  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-dvds 13998  df-gcd 14156  df-phi 14307
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator