MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgrpsubgsymgbi Structured version   Unicode version

Theorem pgrpsubgsymgbi 16568
Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
pgrpsubgsymgbi.g  |-  G  =  ( SymGrp `  A )
pgrpsubgsymgbi.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
pgrpsubgsymgbi  |-  ( A  e.  V  ->  ( P  e.  (SubGrp `  G
)  <->  ( P  C_  B  /\  ( Gs  P )  e.  Grp ) ) )

Proof of Theorem pgrpsubgsymgbi
StepHypRef Expression
1 pgrpsubgsymgbi.b . . . 4  |-  B  =  ( Base `  G
)
21issubg 16337 . . 3  |-  ( P  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  P  C_  B  /\  ( Gs  P )  e.  Grp ) )
3 3anass 975 . . 3  |-  ( ( G  e.  Grp  /\  P  C_  B  /\  ( Gs  P )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( P  C_  B  /\  ( Gs  P )  e.  Grp ) ) )
42, 3bitri 249 . 2  |-  ( P  e.  (SubGrp `  G
)  <->  ( G  e. 
Grp  /\  ( P  C_  B  /\  ( Gs  P )  e.  Grp )
) )
5 pgrpsubgsymgbi.g . . . 4  |-  G  =  ( SymGrp `  A )
65symggrp 16561 . . 3  |-  ( A  e.  V  ->  G  e.  Grp )
7 ibar 502 . . . 4  |-  ( G  e.  Grp  ->  (
( P  C_  B  /\  ( Gs  P )  e.  Grp ) 
<->  ( G  e.  Grp  /\  ( P  C_  B  /\  ( Gs  P )  e.  Grp ) ) ) )
87bicomd 201 . . 3  |-  ( G  e.  Grp  ->  (
( G  e.  Grp  /\  ( P  C_  B  /\  ( Gs  P )  e.  Grp ) )  <->  ( P  C_  B  /\  ( Gs  P )  e.  Grp )
) )
96, 8syl 16 . 2  |-  ( A  e.  V  ->  (
( G  e.  Grp  /\  ( P  C_  B  /\  ( Gs  P )  e.  Grp ) )  <->  ( P  C_  B  /\  ( Gs  P )  e.  Grp )
) )
104, 9syl5bb 257 1  |-  ( A  e.  V  ->  ( P  e.  (SubGrp `  G
)  <->  ( P  C_  B  /\  ( Gs  P )  e.  Grp ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836    C_ wss 3402   ` cfv 5509  (class class class)co 6214   Basecbs 14653   ↾s cress 14654   Grpcgrp 16189  SubGrpcsubg 16331   SymGrpcsymg 16538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509  ax-cnex 9477  ax-resscn 9478  ax-1cn 9479  ax-icn 9480  ax-addcl 9481  ax-addrcl 9482  ax-mulcl 9483  ax-mulrcl 9484  ax-mulcom 9485  ax-addass 9486  ax-mulass 9487  ax-distr 9488  ax-i2m1 9489  ax-1ne0 9490  ax-1rid 9491  ax-rnegex 9492  ax-rrecex 9493  ax-cnre 9494  ax-pre-lttri 9495  ax-pre-lttrn 9496  ax-pre-ltadd 9497  ax-pre-mulgt0 9498
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-nel 2590  df-ral 2747  df-rex 2748  df-reu 2749  df-rmo 2750  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-pss 3418  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-tp 3962  df-op 3964  df-uni 4177  df-int 4213  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-tr 4474  df-eprel 4718  df-id 4722  df-po 4727  df-so 4728  df-fr 4765  df-we 4767  df-ord 4808  df-on 4809  df-lim 4810  df-suc 4811  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-riota 6176  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-om 6618  df-1st 6717  df-2nd 6718  df-recs 6978  df-rdg 7012  df-1o 7066  df-oadd 7070  df-er 7247  df-map 7358  df-en 7454  df-dom 7455  df-sdom 7456  df-fin 7457  df-pnf 9559  df-mnf 9560  df-xr 9561  df-ltxr 9562  df-le 9563  df-sub 9738  df-neg 9739  df-nn 10471  df-2 10529  df-3 10530  df-4 10531  df-5 10532  df-6 10533  df-7 10534  df-8 10535  df-9 10536  df-n0 10731  df-z 10800  df-uz 11020  df-fz 11612  df-struct 14655  df-ndx 14656  df-slot 14657  df-base 14658  df-plusg 14734  df-tset 14740  df-0g 14868  df-mgm 16008  df-sgrp 16047  df-mnd 16057  df-grp 16193  df-subg 16334  df-symg 16539
This theorem is referenced by:  idrespermg  16572
  Copyright terms: Public domain W3C validator