MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpssslw Structured version   Unicode version

Theorem pgpssslw 16111
Description: Every  P-subgroup is contained in a Sylow  P-subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
pgpssslw.1  |-  X  =  ( Base `  G
)
pgpssslw.2  |-  S  =  ( Gs  H )
pgpssslw.3  |-  F  =  ( x  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  |->  ( # `  x ) )
Assertion
Ref Expression
pgpssslw  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. k  e.  ( P pSyl  G ) H  C_  k )
Distinct variable groups:    x, k,
y, G    k, H, x, y    P, k, x, y    k, X, x   
k, F    S, k, x, y
Allowed substitution hints:    F( x, y)    X( y)

Proof of Theorem pgpssslw
Dummy variables  m  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 989 . . . . . . . . . 10  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  X  e.  Fin )
2 elrabi 3112 . . . . . . . . . . 11  |-  ( x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  x  e.  (SubGrp `  G
) )
3 pgpssslw.1 . . . . . . . . . . . 12  |-  X  =  ( Base `  G
)
43subgss 15680 . . . . . . . . . . 11  |-  ( x  e.  (SubGrp `  G
)  ->  x  C_  X
)
52, 4syl 16 . . . . . . . . . 10  |-  ( x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  x 
C_  X )
6 ssfi 7531 . . . . . . . . . 10  |-  ( ( X  e.  Fin  /\  x  C_  X )  ->  x  e.  Fin )
71, 5, 6syl2an 477 . . . . . . . . 9  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  ->  x  e.  Fin )
8 hashcl 12124 . . . . . . . . 9  |-  ( x  e.  Fin  ->  ( # `
 x )  e. 
NN0 )
97, 8syl 16 . . . . . . . 8  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( # `  x )  e.  NN0 )
109nn0zd 10743 . . . . . . 7  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  x  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( # `  x )  e.  ZZ )
11 pgpssslw.3 . . . . . . 7  |-  F  =  ( x  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  |->  ( # `  x ) )
1210, 11fmptd 5865 . . . . . 6  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  F : { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } --> ZZ )
13 frn 5563 . . . . . 6  |-  ( F : { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) } --> ZZ  ->  ran 
F  C_  ZZ )
1412, 13syl 16 . . . . 5  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ran  F  C_  ZZ )
15 fvex 5699 . . . . . . . 8  |-  ( # `  x )  e.  _V
1615, 11fnmpti 5537 . . . . . . 7  |-  F  Fn  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }
17 simp1 988 . . . . . . . 8  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  H  e.  (SubGrp `  G ) )
18 simp3 990 . . . . . . . 8  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  P pGrp  S )
19 eqimss2 3407 . . . . . . . . . . 11  |-  ( y  =  H  ->  H  C_  y )
2019biantrud 507 . . . . . . . . . 10  |-  ( y  =  H  ->  ( P pGrp  ( Gs  y )  <->  ( P pGrp  ( Gs  y )  /\  H  C_  y ) ) )
21 oveq2 6097 . . . . . . . . . . . 12  |-  ( y  =  H  ->  ( Gs  y )  =  ( Gs  H ) )
22 pgpssslw.2 . . . . . . . . . . . 12  |-  S  =  ( Gs  H )
2321, 22syl6eqr 2491 . . . . . . . . . . 11  |-  ( y  =  H  ->  ( Gs  y )  =  S )
2423breq2d 4302 . . . . . . . . . 10  |-  ( y  =  H  ->  ( P pGrp  ( Gs  y )  <->  P pGrp  S ) )
2520, 24bitr3d 255 . . . . . . . . 9  |-  ( y  =  H  ->  (
( P pGrp  ( Gs  y
)  /\  H  C_  y
)  <->  P pGrp  S )
)
2625elrab 3115 . . . . . . . 8  |-  ( H  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  <->  ( H  e.  (SubGrp `  G )  /\  P pGrp  S )
)
2717, 18, 26sylanbrc 664 . . . . . . 7  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  H  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )
28 fnfvelrn 5838 . . . . . . 7  |-  ( ( F  Fn  { y  e.  (SubGrp `  G
)  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  /\  H  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( F `  H
)  e.  ran  F
)
2916, 27, 28sylancr 663 . . . . . 6  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( F `  H )  e.  ran  F )
30 ne0i 3641 . . . . . 6  |-  ( ( F `  H )  e.  ran  F  ->  ran  F  =/=  (/) )
3129, 30syl 16 . . . . 5  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ran  F  =/=  (/) )
32 hashcl 12124 . . . . . . . 8  |-  ( X  e.  Fin  ->  ( # `
 X )  e. 
NN0 )
331, 32syl 16 . . . . . . 7  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( # `  X
)  e.  NN0 )
3433nn0red 10635 . . . . . 6  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( # `  X
)  e.  RR )
35 fveq2 5689 . . . . . . . . . . 11  |-  ( x  =  m  ->  ( # `
 x )  =  ( # `  m
) )
36 fvex 5699 . . . . . . . . . . 11  |-  ( # `  m )  e.  _V
3735, 11, 36fvmpt 5772 . . . . . . . . . 10  |-  ( m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  ( F `  m )  =  ( # `  m
) )
3837adantl 466 . . . . . . . . 9  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( F `  m
)  =  ( # `  m ) )
39 oveq2 6097 . . . . . . . . . . . . 13  |-  ( y  =  m  ->  ( Gs  y )  =  ( Gs  m ) )
4039breq2d 4302 . . . . . . . . . . . 12  |-  ( y  =  m  ->  ( P pGrp  ( Gs  y )  <->  P pGrp  ( Gs  m ) ) )
41 sseq2 3376 . . . . . . . . . . . 12  |-  ( y  =  m  ->  ( H  C_  y  <->  H  C_  m
) )
4240, 41anbi12d 710 . . . . . . . . . . 11  |-  ( y  =  m  ->  (
( P pGrp  ( Gs  y
)  /\  H  C_  y
)  <->  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )
4342elrab 3115 . . . . . . . . . 10  |-  ( m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  <->  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )
441adantr 465 . . . . . . . . . . . 12  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  X  e.  Fin )
453subgss 15680 . . . . . . . . . . . . 13  |-  ( m  e.  (SubGrp `  G
)  ->  m  C_  X
)
4645ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  m  C_  X
)
47 ssdomg 7353 . . . . . . . . . . . 12  |-  ( X  e.  Fin  ->  (
m  C_  X  ->  m  ~<_  X ) )
4844, 46, 47sylc 60 . . . . . . . . . . 11  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  m  ~<_  X )
49 ssfi 7531 . . . . . . . . . . . . 13  |-  ( ( X  e.  Fin  /\  m  C_  X )  ->  m  e.  Fin )
5044, 46, 49syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  m  e.  Fin )
51 hashdom 12140 . . . . . . . . . . . 12  |-  ( ( m  e.  Fin  /\  X  e.  Fin )  ->  ( ( # `  m
)  <_  ( # `  X
)  <->  m  ~<_  X )
)
5250, 44, 51syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  ( ( # `  m )  <_  ( # `
 X )  <->  m  ~<_  X ) )
5348, 52mpbird 232 . . . . . . . . . 10  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( m  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  m )  /\  H  C_  m ) ) )  ->  ( # `  m
)  <_  ( # `  X
) )
5443, 53sylan2b 475 . . . . . . . . 9  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( # `  m )  <_  ( # `  X
) )
5538, 54eqbrtrd 4310 . . . . . . . 8  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( F `  m
)  <_  ( # `  X
) )
5655ralrimiva 2797 . . . . . . 7  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  A. m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 m )  <_ 
( # `  X ) )
57 breq1 4293 . . . . . . . . 9  |-  ( w  =  ( F `  m )  ->  (
w  <_  ( # `  X
)  <->  ( F `  m )  <_  ( # `
 X ) ) )
5857ralrn 5844 . . . . . . . 8  |-  ( F  Fn  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  ( A. w  e.  ran  F  w  <_  ( # `  X
)  <->  A. m  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 m )  <_ 
( # `  X ) ) )
5916, 58ax-mp 5 . . . . . . 7  |-  ( A. w  e.  ran  F  w  <_  ( # `  X
)  <->  A. m  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 m )  <_ 
( # `  X ) )
6056, 59sylibr 212 . . . . . 6  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  A. w  e.  ran  F  w  <_ 
( # `  X ) )
61 breq2 4294 . . . . . . . 8  |-  ( z  =  ( # `  X
)  ->  ( w  <_  z  <->  w  <_  ( # `  X ) ) )
6261ralbidv 2733 . . . . . . 7  |-  ( z  =  ( # `  X
)  ->  ( A. w  e.  ran  F  w  <_  z  <->  A. w  e.  ran  F  w  <_ 
( # `  X ) ) )
6362rspcev 3071 . . . . . 6  |-  ( ( ( # `  X
)  e.  RR  /\  A. w  e.  ran  F  w  <_  ( # `  X
) )  ->  E. z  e.  RR  A. w  e. 
ran  F  w  <_  z )
6434, 60, 63syl2anc 661 . . . . 5  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. z  e.  RR  A. w  e. 
ran  F  w  <_  z )
65 suprzcl 10719 . . . . 5  |-  ( ( ran  F  C_  ZZ  /\ 
ran  F  =/=  (/)  /\  E. z  e.  RR  A. w  e.  ran  F  w  <_ 
z )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
6614, 31, 64, 65syl3anc 1218 . . . 4  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F
)
67 fvelrnb 5737 . . . . 5  |-  ( F  Fn  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  ( sup ( ran  F ,  RR ,  <  )  e.  ran  F  <->  E. k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 k )  =  sup ( ran  F ,  RR ,  <  )
) )
6816, 67ax-mp 5 . . . 4  |-  ( sup ( ran  F ,  RR ,  <  )  e. 
ran  F  <->  E. k  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 k )  =  sup ( ran  F ,  RR ,  <  )
)
6966, 68sylib 196 . . 3  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) }  ( F `
 k )  =  sup ( ran  F ,  RR ,  <  )
)
70 oveq2 6097 . . . . . 6  |-  ( y  =  k  ->  ( Gs  y )  =  ( Gs  k ) )
7170breq2d 4302 . . . . 5  |-  ( y  =  k  ->  ( P pGrp  ( Gs  y )  <->  P pGrp  ( Gs  k ) ) )
72 sseq2 3376 . . . . 5  |-  ( y  =  k  ->  ( H  C_  y  <->  H  C_  k
) )
7371, 72anbi12d 710 . . . 4  |-  ( y  =  k  ->  (
( P pGrp  ( Gs  y
)  /\  H  C_  y
)  <->  ( P pGrp  ( Gs  k )  /\  H  C_  k ) ) )
7473rexrab 3121 . . 3  |-  ( E. k  e.  { y  e.  (SubGrp `  G
)  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ( F `  k
)  =  sup ( ran  F ,  RR ,  <  )  <->  E. k  e.  (SubGrp `  G ) ( ( P pGrp  ( Gs  k )  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) )
7569, 74sylib 196 . 2  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. k  e.  (SubGrp `  G )
( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) )
76 simpl3 993 . . . . . . 7  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  P pGrp  S )
77 pgpprm 16090 . . . . . . 7  |-  ( P pGrp 
S  ->  P  e.  Prime )
7876, 77syl 16 . . . . . 6  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  P  e.  Prime )
79 simprl 755 . . . . . 6  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
k  e.  (SubGrp `  G ) )
80 zssre 10651 . . . . . . . . . . . . . . . 16  |-  ZZ  C_  RR
8114, 80syl6ss 3366 . . . . . . . . . . . . . . 15  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ran  F  C_  RR )
8281ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ran  F  C_  RR )
8331ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ran  F  =/=  (/) )
8464ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  E. z  e.  RR  A. w  e. 
ran  F  w  <_  z )
85 simprl 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  m  e.  (SubGrp `  G ) )
86 simprrr 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  P pGrp  ( Gs  m ) )
87 simprrl 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
( P pGrp  ( Gs  k
)  /\  H  C_  k
) )
8887adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( P pGrp  ( Gs  k )  /\  H  C_  k ) )
8988simprd 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  H  C_  k
)
90 simprrl 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  C_  m )
9189, 90sstrd 3364 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  H  C_  m
)
9286, 91jca 532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( P pGrp  ( Gs  m )  /\  H  C_  m ) )
9385, 92, 43sylanbrc 664 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  m  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )
9493, 37syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( F `  m )  =  (
# `  m )
)
95 fnfvelrn 5838 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  { y  e.  (SubGrp `  G
)  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  /\  m  e.  {
y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )  -> 
( F `  m
)  e.  ran  F
)
9616, 93, 95sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( F `  m )  e.  ran  F )
9794, 96eqeltrrd 2516 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( # `  m
)  e.  ran  F
)
98 suprub 10289 . . . . . . . . . . . . . 14  |-  ( ( ( ran  F  C_  RR  /\  ran  F  =/=  (/)  /\  E. z  e.  RR  A. w  e. 
ran  F  w  <_  z )  /\  ( # `  m )  e.  ran  F )  ->  ( # `  m
)  <_  sup ( ran  F ,  RR ,  <  ) )
9982, 83, 84, 97, 98syl31anc 1221 . . . . . . . . . . . . 13  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( # `  m
)  <_  sup ( ran  F ,  RR ,  <  ) )
100 simprrr 764 . . . . . . . . . . . . . . 15  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
( F `  k
)  =  sup ( ran  F ,  RR ,  <  ) )
101100adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) )
10279adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  e.  (SubGrp `  G ) )
10373elrab 3115 . . . . . . . . . . . . . . . 16  |-  ( k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  <->  ( k  e.  (SubGrp `  G )  /\  ( P pGrp  ( Gs  k )  /\  H  C_  k ) ) )
104102, 88, 103sylanbrc 664 . . . . . . . . . . . . . . 15  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y
) } )
105 fveq2 5689 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  ( # `
 x )  =  ( # `  k
) )
106 fvex 5699 . . . . . . . . . . . . . . . 16  |-  ( # `  k )  e.  _V
107105, 11, 106fvmpt 5772 . . . . . . . . . . . . . . 15  |-  ( k  e.  { y  e.  (SubGrp `  G )  |  ( P pGrp  ( Gs  y )  /\  H  C_  y ) }  ->  ( F `  k )  =  ( # `  k
) )
108104, 107syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( F `  k )  =  (
# `  k )
)
109101, 108eqtr3d 2475 . . . . . . . . . . . . 13  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  sup ( ran  F ,  RR ,  <  )  =  ( # `  k ) )
11099, 109breqtrd 4314 . . . . . . . . . . . 12  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( # `  m
)  <_  ( # `  k
) )
111 simpll2 1028 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  X  e.  Fin )
11245ad2antrl 727 . . . . . . . . . . . . . 14  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  m  C_  X
)
113111, 112, 49syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  m  e.  Fin )
114 ssfi 7531 . . . . . . . . . . . . . 14  |-  ( ( m  e.  Fin  /\  k  C_  m )  -> 
k  e.  Fin )
115113, 90, 114syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  e.  Fin )
116 hashcl 12124 . . . . . . . . . . . . . 14  |-  ( m  e.  Fin  ->  ( # `
 m )  e. 
NN0 )
117 hashcl 12124 . . . . . . . . . . . . . 14  |-  ( k  e.  Fin  ->  ( # `
 k )  e. 
NN0 )
118 nn0re 10586 . . . . . . . . . . . . . . 15  |-  ( (
# `  m )  e.  NN0  ->  ( # `  m
)  e.  RR )
119 nn0re 10586 . . . . . . . . . . . . . . 15  |-  ( (
# `  k )  e.  NN0  ->  ( # `  k
)  e.  RR )
120 lenlt 9451 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  m
)  e.  RR  /\  ( # `  k )  e.  RR )  -> 
( ( # `  m
)  <_  ( # `  k
)  <->  -.  ( # `  k
)  <  ( # `  m
) ) )
121118, 119, 120syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( ( # `  m
)  e.  NN0  /\  ( # `  k )  e.  NN0 )  -> 
( ( # `  m
)  <_  ( # `  k
)  <->  -.  ( # `  k
)  <  ( # `  m
) ) )
122116, 117, 121syl2an 477 . . . . . . . . . . . . 13  |-  ( ( m  e.  Fin  /\  k  e.  Fin )  ->  ( ( # `  m
)  <_  ( # `  k
)  <->  -.  ( # `  k
)  <  ( # `  m
) ) )
123113, 115, 122syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( ( # `
 m )  <_ 
( # `  k )  <->  -.  ( # `  k
)  <  ( # `  m
) ) )
124110, 123mpbid 210 . . . . . . . . . . 11  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  -.  ( # `
 k )  < 
( # `  m ) )
125 php3 7495 . . . . . . . . . . . . . 14  |-  ( ( m  e.  Fin  /\  k  C.  m )  -> 
k  ~<  m )
126125ex 434 . . . . . . . . . . . . 13  |-  ( m  e.  Fin  ->  (
k  C.  m  ->  k 
~<  m ) )
127113, 126syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( k  C.  m  ->  k  ~<  m ) )
128 hashsdom 12142 . . . . . . . . . . . . 13  |-  ( ( k  e.  Fin  /\  m  e.  Fin )  ->  ( ( # `  k
)  <  ( # `  m
)  <->  k  ~<  m
) )
129115, 113, 128syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( ( # `
 k )  < 
( # `  m )  <-> 
k  ~<  m ) )
130127, 129sylibrd 234 . . . . . . . . . . 11  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( k  C.  m  ->  ( # `  k
)  <  ( # `  m
) ) )
131124, 130mtod 177 . . . . . . . . . 10  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  -.  k  C.  m )
132 sspss 3453 . . . . . . . . . . . 12  |-  ( k 
C_  m  <->  ( k  C.  m  \/  k  =  m ) )
13390, 132sylib 196 . . . . . . . . . . 11  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( k  C.  m  \/  k  =  m ) )
134133ord 377 . . . . . . . . . 10  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  ( -.  k  C.  m  ->  k  =  m ) )
135131, 134mpd 15 . . . . . . . . 9  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  ( m  e.  (SubGrp `  G
)  /\  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )  ->  k  =  m )
136135expr 615 . . . . . . . 8  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  m  e.  (SubGrp `  G )
)  ->  ( (
k  C_  m  /\  P pGrp  ( Gs  m ) )  -> 
k  =  m ) )
13787simpld 459 . . . . . . . . . 10  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  P pGrp  ( Gs  k ) )
138137adantr 465 . . . . . . . . 9  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  m  e.  (SubGrp `  G )
)  ->  P pGrp  ( Gs  k ) )
139 oveq2 6097 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( Gs  k )  =  ( Gs  m ) )
140139breq2d 4302 . . . . . . . . . 10  |-  ( k  =  m  ->  ( P pGrp  ( Gs  k )  <->  P pGrp  ( Gs  m ) ) )
141 eqimss 3406 . . . . . . . . . . 11  |-  ( k  =  m  ->  k  C_  m )
142141biantrurd 508 . . . . . . . . . 10  |-  ( k  =  m  ->  ( P pGrp  ( Gs  m )  <->  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )
143140, 142bitrd 253 . . . . . . . . 9  |-  ( k  =  m  ->  ( P pGrp  ( Gs  k )  <->  ( k  C_  m  /\  P pGrp  ( Gs  m ) ) ) )
144138, 143syl5ibcom 220 . . . . . . . 8  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  m  e.  (SubGrp `  G )
)  ->  ( k  =  m  ->  ( k 
C_  m  /\  P pGrp  ( Gs  m ) ) ) )
145136, 144impbid 191 . . . . . . 7  |-  ( ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S )  /\  ( k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) ) )  /\  m  e.  (SubGrp `  G )
)  ->  ( (
k  C_  m  /\  P pGrp  ( Gs  m ) )  <->  k  =  m ) )
146145ralrimiva 2797 . . . . . 6  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  A. m  e.  (SubGrp `  G ) ( ( k  C_  m  /\  P pGrp  ( Gs  m ) )  <->  k  =  m ) )
147 isslw 16105 . . . . . 6  |-  ( k  e.  ( P pSyl  G
)  <->  ( P  e. 
Prime  /\  k  e.  (SubGrp `  G )  /\  A. m  e.  (SubGrp `  G
) ( ( k 
C_  m  /\  P pGrp  ( Gs  m ) )  <->  k  =  m ) ) )
14878, 79, 146, 147syl3anbrc 1172 . . . . 5  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
k  e.  ( P pSyl 
G ) )
14987simprd 463 . . . . 5  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  ->  H  C_  k )
150148, 149jca 532 . . . 4  |-  ( ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  /\  ( k  e.  (SubGrp `  G )  /\  ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  )
) ) )  -> 
( k  e.  ( P pSyl  G )  /\  H  C_  k ) )
151150ex 434 . . 3  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( (
k  e.  (SubGrp `  G )  /\  (
( P pGrp  ( Gs  k
)  /\  H  C_  k
)  /\  ( F `  k )  =  sup ( ran  F ,  RR ,  <  ) ) )  ->  ( k  e.  ( P pSyl  G )  /\  H  C_  k
) ) )
152151reximdv2 2823 . 2  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  ( E. k  e.  (SubGrp `  G
) ( ( P pGrp  ( Gs  k )  /\  H  C_  k )  /\  ( F `  k )  =  sup ( ran 
F ,  RR ,  <  ) )  ->  E. k  e.  ( P pSyl  G ) H  C_  k )
)
15375, 152mpd 15 1  |-  ( ( H  e.  (SubGrp `  G )  /\  X  e.  Fin  /\  P pGrp  S
)  ->  E. k  e.  ( P pSyl  G ) H  C_  k )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717    C_ wss 3326    C. wpss 3327   (/)c0 3635   class class class wbr 4290    e. cmpt 4348   ran crn 4839    Fn wfn 5411   -->wf 5412   ` cfv 5416  (class class class)co 6089    ~<_ cdom 7306    ~< csdm 7307   Fincfn 7308   supcsup 7688   RRcr 9279    < clt 9416    <_ cle 9417   NN0cn0 10577   ZZcz 10644   #chash 12101   Primecprime 13761   Basecbs 14172   ↾s cress 14173  SubGrpcsubg 15673   pGrp cpgp 16028   pSyl cslw 16029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-oadd 6922  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-sup 7689  df-card 8107  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-nn 10321  df-n0 10578  df-z 10645  df-uz 10860  df-fz 11436  df-hash 12102  df-subg 15676  df-pgp 16032  df-slw 16033
This theorem is referenced by:  slwn0  16112
  Copyright terms: Public domain W3C validator