MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfi Structured version   Unicode version

Theorem pgpfi 16097
Description: The converse to pgpfi1 16087. A finite group is a  P-group iff it has size some power of  P. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
pgpfi.1  |-  X  =  ( Base `  G
)
Assertion
Ref Expression
pgpfi  |-  ( ( G  e.  Grp  /\  X  e.  Fin )  ->  ( P pGrp  G  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) ) ) )
Distinct variable groups:    n, G    P, n    n, X

Proof of Theorem pgpfi
Dummy variables  g  m  p  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfi.1 . . . 4  |-  X  =  ( Base `  G
)
2 eqid 2441 . . . 4  |-  ( od
`  G )  =  ( od `  G
)
31, 2ispgp 16084 . . 3  |-  ( P pGrp 
G  <->  ( P  e. 
Prime  /\  G  e.  Grp  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )
4 simprl 750 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  P  e.  Prime )
51grpbn0 15560 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  X  =/=  (/) )
65ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  X  =/=  (/) )
7 hashnncl 12130 . . . . . . . . . . 11  |-  ( X  e.  Fin  ->  (
( # `  X )  e.  NN  <->  X  =/=  (/) ) )
87ad2antlr 721 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( ( # `
 X )  e.  NN  <->  X  =/=  (/) ) )
96, 8mpbird 232 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( # `  X
)  e.  NN )
104, 9pccld 13913 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( P  pCnt  ( # `  X
) )  e.  NN0 )
1110nn0red 10633 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( P  pCnt  ( # `  X
) )  e.  RR )
1211leidd 9902 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( P  pCnt  ( # `  X
) )  <_  ( P  pCnt  ( # `  X
) ) )
1310nn0zd 10741 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( P  pCnt  ( # `  X
) )  e.  ZZ )
14 pcid 13935 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  ( P  pCnt  ( # `  X
) )  e.  ZZ )  ->  ( P  pCnt  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )  =  ( P  pCnt  (
# `  X )
) )
154, 13, 14syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( P  pCnt  ( P ^ ( P  pCnt  ( # `  X
) ) ) )  =  ( P  pCnt  (
# `  X )
) )
1612, 15breqtrrd 4315 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( P  pCnt  ( # `  X
) )  <_  ( P  pCnt  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
1716ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( P  pCnt  ( # `
 X ) )  <_  ( P  pCnt  ( P ^ ( P 
pCnt  ( # `  X
) ) ) ) )
18 simpr 458 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  p  =  P )
1918oveq1d 6105 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  ( # `
 X ) )  =  ( P  pCnt  (
# `  X )
) )
2018oveq1d 6105 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  ( P ^ ( P  pCnt  (
# `  X )
) ) )  =  ( P  pCnt  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
2117, 19, 203brtr4d 4319 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =  P )  ->  ( p  pCnt  ( # `
 X ) )  <_  ( p  pCnt  ( P ^ ( P 
pCnt  ( # `  X
) ) ) ) )
22 simp-4l 760 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  ||  ( # `  X
) )  ->  G  e.  Grp )
23 simplr 749 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  X  e.  Fin )
2423ad2antrr 720 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  ||  ( # `  X
) )  ->  X  e.  Fin )
25 simplr 749 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  ||  ( # `  X
) )  ->  p  e.  Prime )
26 simpr 458 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  ||  ( # `  X
) )  ->  p  ||  ( # `  X
) )
271, 2odcau 16096 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin  /\  p  e.  Prime )  /\  p  ||  ( # `  X
) )  ->  E. g  e.  X  ( ( od `  G ) `  g )  =  p )
2822, 24, 25, 26, 27syl31anc 1216 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  ||  ( # `  X
) )  ->  E. g  e.  X  ( ( od `  G ) `  g )  =  p )
2925adantr 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  p  e.  Prime )
30 prmz 13763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  Prime  ->  p  e.  ZZ )
31 iddvds 13542 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  ZZ  ->  p  ||  p )
3229, 30, 313syl 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  p  ||  p
)
33 simprr 751 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  ( ( od `  G ) `  g )  =  p )
3432, 33breqtrrd 4315 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  p  ||  (
( od `  G
) `  g )
)
35 simplrr 755 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  ->  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) )
36 fveq2 5688 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  g  ->  (
( od `  G
) `  x )  =  ( ( od
`  G ) `  g ) )
3736eqeq1d 2449 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  g  ->  (
( ( od `  G ) `  x
)  =  ( P ^ m )  <->  ( ( od `  G ) `  g )  =  ( P ^ m ) ) )
3837rexbidv 2734 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  g  ->  ( E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m )  <->  E. m  e.  NN0  ( ( od
`  G ) `  g )  =  ( P ^ m ) ) )
3938rspccva 3069 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m )  /\  g  e.  X )  ->  E. m  e.  NN0  ( ( od `  G ) `  g
)  =  ( P ^ m ) )
4035, 39sylan 468 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  g  e.  X )  ->  E. m  e.  NN0  ( ( od `  G ) `  g
)  =  ( P ^ m ) )
4140ad2ant2r 741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  E. m  e.  NN0  ( ( od
`  G ) `  g )  =  ( P ^ m ) )
424ad3antrrr 724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  P  e.  Prime )
43 prmnn 13762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( p  e.  Prime  ->  p  e.  NN )
4429, 43syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  p  e.  NN )
4533, 44eqeltrd 2515 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  ( ( od `  G ) `  g )  e.  NN )
46 pcprmpw 13945 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Prime  /\  (
( od `  G
) `  g )  e.  NN )  ->  ( E. m  e.  NN0  ( ( od `  G ) `  g
)  =  ( P ^ m )  <->  ( ( od `  G ) `  g )  =  ( P ^ ( P 
pCnt  ( ( od
`  G ) `  g ) ) ) ) )
4742, 45, 46syl2anc 656 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  ( E. m  e.  NN0  ( ( od `  G ) `
 g )  =  ( P ^ m
)  <->  ( ( od
`  G ) `  g )  =  ( P ^ ( P 
pCnt  ( ( od
`  G ) `  g ) ) ) ) )
4841, 47mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  ( ( od `  G ) `  g )  =  ( P ^ ( P 
pCnt  ( ( od
`  G ) `  g ) ) ) )
4934, 48breqtrd 4313 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  p  ||  ( P ^ ( P  pCnt  ( ( od `  G
) `  g )
) ) )
5042, 45pccld 13913 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  ( P  pCnt  ( ( od `  G ) `  g
) )  e.  NN0 )
51 prmdvdsexpr 13798 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e.  Prime  /\  P  e.  Prime  /\  ( P  pCnt  ( ( od `  G ) `  g
) )  e.  NN0 )  ->  ( p  ||  ( P ^ ( P 
pCnt  ( ( od
`  G ) `  g ) ) )  ->  p  =  P ) )
5229, 42, 50, 51syl3anc 1213 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  ( p  ||  ( P ^ ( P  pCnt  ( ( od
`  G ) `  g ) ) )  ->  p  =  P ) )
5349, 52mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  /\  p  e. 
Prime )  /\  p  ||  ( # `  X
) )  /\  (
g  e.  X  /\  ( ( od `  G ) `  g
)  =  p ) )  ->  p  =  P )
5428, 53rexlimddv 2843 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  ||  ( # `  X
) )  ->  p  =  P )
5554ex 434 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  -> 
( p  ||  ( # `
 X )  ->  p  =  P )
)
5655necon3ad 2642 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  -> 
( p  =/=  P  ->  -.  p  ||  ( # `
 X ) ) )
5756imp 429 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =/=  P )  ->  -.  p  ||  ( # `  X ) )
58 simplr 749 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =/=  P )  ->  p  e.  Prime )
599ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =/=  P )  -> 
( # `  X )  e.  NN )
60 pceq0 13933 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  (
( p  pCnt  ( # `
 X ) )  =  0  <->  -.  p  ||  ( # `  X
) ) )
6158, 59, 60syl2anc 656 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =/=  P )  -> 
( ( p  pCnt  (
# `  X )
)  =  0  <->  -.  p  ||  ( # `  X
) ) )
6257, 61mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =/=  P )  -> 
( p  pCnt  ( # `
 X ) )  =  0 )
63 prmnn 13762 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  NN )
6463ad2antrl 722 . . . . . . . . . . . . . . . 16  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  P  e.  NN )
6564, 10nnexpcld 12025 . . . . . . . . . . . . . . 15  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( P ^ ( P  pCnt  (
# `  X )
) )  e.  NN )
6665ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =/=  P )  -> 
( P ^ ( P  pCnt  ( # `  X
) ) )  e.  NN )
6758, 66pccld 13913 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =/=  P )  -> 
( p  pCnt  ( P ^ ( P  pCnt  (
# `  X )
) ) )  e. 
NN0 )
6867nn0ge0d 10635 . . . . . . . . . . . 12  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =/=  P )  -> 
0  <_  ( p  pCnt  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )
6962, 68eqbrtrd 4309 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  /\  p  =/=  P )  -> 
( p  pCnt  ( # `
 X ) )  <_  ( p  pCnt  ( P ^ ( P 
pCnt  ( # `  X
) ) ) ) )
7021, 69pm2.61dane 2687 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  /\  p  e.  Prime )  -> 
( p  pCnt  ( # `
 X ) )  <_  ( p  pCnt  ( P ^ ( P 
pCnt  ( # `  X
) ) ) ) )
7170ralrimiva 2797 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  A. p  e.  Prime  ( p  pCnt  (
# `  X )
)  <_  ( p  pCnt  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) )
72 hashcl 12122 . . . . . . . . . . . 12  |-  ( X  e.  Fin  ->  ( # `
 X )  e. 
NN0 )
7372ad2antlr 721 . . . . . . . . . . 11  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( # `  X
)  e.  NN0 )
7473nn0zd 10741 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( # `  X
)  e.  ZZ )
7565nnzd 10742 . . . . . . . . . 10  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( P ^ ( P  pCnt  (
# `  X )
) )  e.  ZZ )
76 pc2dvds 13941 . . . . . . . . . 10  |-  ( ( ( # `  X
)  e.  ZZ  /\  ( P ^ ( P 
pCnt  ( # `  X
) ) )  e.  ZZ )  ->  (
( # `  X ) 
||  ( P ^
( P  pCnt  ( # `
 X ) ) )  <->  A. p  e.  Prime  ( p  pCnt  ( # `  X
) )  <_  (
p  pCnt  ( P ^ ( P  pCnt  (
# `  X )
) ) ) ) )
7774, 75, 76syl2anc 656 . . . . . . . . 9  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( ( # `
 X )  ||  ( P ^ ( P 
pCnt  ( # `  X
) ) )  <->  A. p  e.  Prime  ( p  pCnt  (
# `  X )
)  <_  ( p  pCnt  ( P ^ ( P  pCnt  ( # `  X
) ) ) ) ) )
7871, 77mpbird 232 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( # `  X
)  ||  ( P ^ ( P  pCnt  (
# `  X )
) ) )
79 oveq2 6098 . . . . . . . . . 10  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( P ^ n )  =  ( P ^ ( P  pCnt  ( # `  X
) ) ) )
8079breq2d 4301 . . . . . . . . 9  |-  ( n  =  ( P  pCnt  (
# `  X )
)  ->  ( ( # `
 X )  ||  ( P ^ n )  <-> 
( # `  X ) 
||  ( P ^
( P  pCnt  ( # `
 X ) ) ) ) )
8180rspcev 3070 . . . . . . . 8  |-  ( ( ( P  pCnt  ( # `
 X ) )  e.  NN0  /\  ( # `
 X )  ||  ( P ^ ( P 
pCnt  ( # `  X
) ) ) )  ->  E. n  e.  NN0  ( # `  X ) 
||  ( P ^
n ) )
8210, 78, 81syl2anc 656 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  E. n  e.  NN0  ( # `  X
)  ||  ( P ^ n ) )
83 pcprmpw2 13944 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  ( E. n  e.  NN0  ( # `  X ) 
||  ( P ^
n )  <->  ( # `  X
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
84 pcprmpw 13945 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  ( E. n  e.  NN0  ( # `  X )  =  ( P ^
n )  <->  ( # `  X
)  =  ( P ^ ( P  pCnt  (
# `  X )
) ) ) )
8583, 84bitr4d 256 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( # `
 X )  e.  NN )  ->  ( E. n  e.  NN0  ( # `  X ) 
||  ( P ^
n )  <->  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) ) )
864, 9, 85syl2anc 656 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( E. n  e.  NN0  ( # `  X )  ||  ( P ^ n )  <->  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) ) )
8782, 86mpbid 210 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) )
884, 87jca 529 . . . . 5  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) ) )  ->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) ) )
89883adantr2 1143 . . . 4  |-  ( ( ( G  e.  Grp  /\  X  e.  Fin )  /\  ( P  e.  Prime  /\  G  e.  Grp  /\  A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `
 x )  =  ( P ^ m
) ) )  -> 
( P  e.  Prime  /\ 
E. n  e.  NN0  ( # `  X )  =  ( P ^
n ) ) )
9089ex 434 . . 3  |-  ( ( G  e.  Grp  /\  X  e.  Fin )  ->  ( ( P  e. 
Prime  /\  G  e.  Grp  /\ 
A. x  e.  X  E. m  e.  NN0  ( ( od `  G ) `  x
)  =  ( P ^ m ) )  ->  ( P  e. 
Prime  /\  E. n  e. 
NN0  ( # `  X
)  =  ( P ^ n ) ) ) )
913, 90syl5bi 217 . 2  |-  ( ( G  e.  Grp  /\  X  e.  Fin )  ->  ( P pGrp  G  -> 
( P  e.  Prime  /\ 
E. n  e.  NN0  ( # `  X )  =  ( P ^
n ) ) ) )
921pgpfi1 16087 . . . . . 6  |-  ( ( G  e.  Grp  /\  P  e.  Prime  /\  n  e.  NN0 )  ->  (
( # `  X )  =  ( P ^
n )  ->  P pGrp  G ) )
93923expia 1184 . . . . 5  |-  ( ( G  e.  Grp  /\  P  e.  Prime )  -> 
( n  e.  NN0  ->  ( ( # `  X
)  =  ( P ^ n )  ->  P pGrp  G ) ) )
9493rexlimdv 2838 . . . 4  |-  ( ( G  e.  Grp  /\  P  e.  Prime )  -> 
( E. n  e. 
NN0  ( # `  X
)  =  ( P ^ n )  ->  P pGrp  G ) )
9594expimpd 600 . . 3  |-  ( G  e.  Grp  ->  (
( P  e.  Prime  /\ 
E. n  e.  NN0  ( # `  X )  =  ( P ^
n ) )  ->  P pGrp  G ) )
9695adantr 462 . 2  |-  ( ( G  e.  Grp  /\  X  e.  Fin )  ->  ( ( P  e. 
Prime  /\  E. n  e. 
NN0  ( # `  X
)  =  ( P ^ n ) )  ->  P pGrp  G )
)
9791, 96impbid 191 1  |-  ( ( G  e.  Grp  /\  X  e.  Fin )  ->  ( P pGrp  G  <->  ( P  e.  Prime  /\  E. n  e.  NN0  ( # `  X
)  =  ( P ^ n ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   (/)c0 3634   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   Fincfn 7306   0cc0 9278    <_ cle 9415   NNcn 10318   NN0cn0 10575   ZZcz 10642   ^cexp 11861   #chash 12099    || cdivides 13531   Primecprime 13759    pCnt cpc 13899   Basecbs 14170   Grpcgrp 15406   odcod 16021   pGrp cpgp 16023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-dvds 13532  df-gcd 13687  df-prm 13760  df-pc 13900  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-mnd 15411  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-eqg 15673  df-ga 15801  df-od 16025  df-pgp 16027
This theorem is referenced by:  pgpfi2  16098  sylow2alem2  16110  slwhash  16116  fislw  16117
  Copyright terms: Public domain W3C validator