MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfaclem2 Structured version   Unicode version

Theorem pgpfaclem2 17658
Description: Lemma for pgpfac 17660. (Contributed by Mario Carneiro, 27-Apr-2016.) (Revised by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
pgpfac.b  |-  B  =  ( Base `  G
)
pgpfac.c  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
pgpfac.g  |-  ( ph  ->  G  e.  Abel )
pgpfac.p  |-  ( ph  ->  P pGrp  G )
pgpfac.f  |-  ( ph  ->  B  e.  Fin )
pgpfac.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac.a  |-  ( ph  ->  A. t  e.  (SubGrp `  G ) ( t 
C.  U  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )
pgpfac.h  |-  H  =  ( Gs  U )
pgpfac.k  |-  K  =  (mrCls `  (SubGrp `  H
) )
pgpfac.o  |-  O  =  ( od `  H
)
pgpfac.e  |-  E  =  (gEx `  H )
pgpfac.0  |-  .0.  =  ( 0g `  H )
pgpfac.l  |-  .(+)  =  (
LSSum `  H )
pgpfac.1  |-  ( ph  ->  E  =/=  1 )
pgpfac.x  |-  ( ph  ->  X  e.  U )
pgpfac.oe  |-  ( ph  ->  ( O `  X
)  =  E )
pgpfac.w  |-  ( ph  ->  W  e.  (SubGrp `  H ) )
pgpfac.i  |-  ( ph  ->  ( ( K `  { X } )  i^i 
W )  =  {  .0.  } )
pgpfac.s  |-  ( ph  ->  ( ( K `  { X } )  .(+)  W )  =  U )
Assertion
Ref Expression
pgpfaclem2  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  U ) )
Distinct variable groups:    t, s, C    s, r, t, G    K, r, s    ph, t    B, s, t    U, r, s, t    W, s, t    X, r, s
Allowed substitution hints:    ph( s, r)    B( r)    C( r)    P( t, s, r)    .(+) ( t, s, r)    E( t, s, r)    H( t, s, r)    K( t)    O( t, s, r)    W( r)    X( t)    .0. ( t, s, r)

Proof of Theorem pgpfaclem2
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 pgpfac.w . . . . . 6  |-  ( ph  ->  W  e.  (SubGrp `  H ) )
2 pgpfac.u . . . . . . 7  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
3 pgpfac.h . . . . . . . 8  |-  H  =  ( Gs  U )
43subsubg 16783 . . . . . . 7  |-  ( U  e.  (SubGrp `  G
)  ->  ( W  e.  (SubGrp `  H )  <->  ( W  e.  (SubGrp `  G )  /\  W  C_  U ) ) )
52, 4syl 17 . . . . . 6  |-  ( ph  ->  ( W  e.  (SubGrp `  H )  <->  ( W  e.  (SubGrp `  G )  /\  W  C_  U ) ) )
61, 5mpbid 213 . . . . 5  |-  ( ph  ->  ( W  e.  (SubGrp `  G )  /\  W  C_  U ) )
76simpld 460 . . . 4  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
8 pgpfac.a . . . 4  |-  ( ph  ->  A. t  e.  (SubGrp `  G ) ( t 
C.  U  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )
96simprd 464 . . . . 5  |-  ( ph  ->  W  C_  U )
10 pgpfac.f . . . . . . . . . . 11  |-  ( ph  ->  B  e.  Fin )
11 pgpfac.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  G
)
1211subgss 16761 . . . . . . . . . . . 12  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
132, 12syl 17 . . . . . . . . . . 11  |-  ( ph  ->  U  C_  B )
14 ssfi 7745 . . . . . . . . . . 11  |-  ( ( B  e.  Fin  /\  U  C_  B )  ->  U  e.  Fin )
1510, 13, 14syl2anc 665 . . . . . . . . . 10  |-  ( ph  ->  U  e.  Fin )
16 ssfi 7745 . . . . . . . . . 10  |-  ( ( U  e.  Fin  /\  W  C_  U )  ->  W  e.  Fin )
1715, 9, 16syl2anc 665 . . . . . . . . 9  |-  ( ph  ->  W  e.  Fin )
18 hashcl 12488 . . . . . . . . 9  |-  ( W  e.  Fin  ->  ( # `
 W )  e. 
NN0 )
1917, 18syl 17 . . . . . . . 8  |-  ( ph  ->  ( # `  W
)  e.  NN0 )
2019nn0red 10877 . . . . . . 7  |-  ( ph  ->  ( # `  W
)  e.  RR )
21 pgpfac.0 . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  H )
22 fvex 5835 . . . . . . . . . . . 12  |-  ( 0g
`  H )  e. 
_V
2321, 22eqeltri 2502 . . . . . . . . . . 11  |-  .0.  e.  _V
24 hashsng 12499 . . . . . . . . . . 11  |-  (  .0. 
e.  _V  ->  ( # `  {  .0.  } )  =  1 )
2523, 24ax-mp 5 . . . . . . . . . 10  |-  ( # `  {  .0.  } )  =  1
26 subgrcl 16765 . . . . . . . . . . . . . . . 16  |-  ( W  e.  (SubGrp `  H
)  ->  H  e.  Grp )
27 eqid 2428 . . . . . . . . . . . . . . . . 17  |-  ( Base `  H )  =  (
Base `  H )
2827subgacs 16795 . . . . . . . . . . . . . . . 16  |-  ( H  e.  Grp  ->  (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) ) )
29 acsmre 15501 . . . . . . . . . . . . . . . 16  |-  ( (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H
) ) )
301, 26, 28, 294syl 19 . . . . . . . . . . . . . . 15  |-  ( ph  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H ) ) )
31 pgpfac.k . . . . . . . . . . . . . . 15  |-  K  =  (mrCls `  (SubGrp `  H
) )
3230, 31mrcssvd 15472 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( K `  { X } )  C_  ( Base `  H ) )
333subgbas 16764 . . . . . . . . . . . . . . 15  |-  ( U  e.  (SubGrp `  G
)  ->  U  =  ( Base `  H )
)
342, 33syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  =  ( Base `  H ) )
3532, 34sseqtr4d 3444 . . . . . . . . . . . . 13  |-  ( ph  ->  ( K `  { X } )  C_  U
)
36 ssfi 7745 . . . . . . . . . . . . 13  |-  ( ( U  e.  Fin  /\  ( K `  { X } )  C_  U
)  ->  ( K `  { X } )  e.  Fin )
3715, 35, 36syl2anc 665 . . . . . . . . . . . 12  |-  ( ph  ->  ( K `  { X } )  e.  Fin )
38 pgpfac.x . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  X  e.  U )
3938, 34eleqtrd 2508 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  X  e.  ( Base `  H ) )
4031mrcsncl 15461 . . . . . . . . . . . . . . . 16  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  X  e.  ( Base `  H ) )  -> 
( K `  { X } )  e.  (SubGrp `  H ) )
4130, 39, 40syl2anc 665 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( K `  { X } )  e.  (SubGrp `  H ) )
4221subg0cl 16768 . . . . . . . . . . . . . . 15  |-  ( ( K `  { X } )  e.  (SubGrp `  H )  ->  .0.  e.  ( K `  { X } ) )
4341, 42syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  .0.  e.  ( K `
 { X }
) )
4443snssd 4088 . . . . . . . . . . . . 13  |-  ( ph  ->  {  .0.  }  C_  ( K `  { X } ) )
4539snssd 4088 . . . . . . . . . . . . . . 15  |-  ( ph  ->  { X }  C_  ( Base `  H )
)
4630, 31, 45mrcssidd 15474 . . . . . . . . . . . . . 14  |-  ( ph  ->  { X }  C_  ( K `  { X } ) )
47 snssg 4076 . . . . . . . . . . . . . . 15  |-  ( X  e.  U  ->  ( X  e.  ( K `  { X } )  <->  { X }  C_  ( K `  { X } ) ) )
4838, 47syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  e.  ( K `  { X } )  <->  { X }  C_  ( K `  { X } ) ) )
4946, 48mpbird 235 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  ( K `
 { X }
) )
50 pgpfac.oe . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( O `  X
)  =  E )
51 pgpfac.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  E  =/=  1 )
5250, 51eqnetrd 2668 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( O `  X
)  =/=  1 )
53 pgpfac.o . . . . . . . . . . . . . . . . . 18  |-  O  =  ( od `  H
)
5453, 21od1 17153 . . . . . . . . . . . . . . . . 17  |-  ( H  e.  Grp  ->  ( O `  .0.  )  =  1 )
551, 26, 543syl 18 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( O `  .0.  )  =  1 )
56 elsni 3966 . . . . . . . . . . . . . . . . . 18  |-  ( X  e.  {  .0.  }  ->  X  =  .0.  )
5756fveq2d 5829 . . . . . . . . . . . . . . . . 17  |-  ( X  e.  {  .0.  }  ->  ( O `  X
)  =  ( O `
 .0.  ) )
5857eqeq1d 2430 . . . . . . . . . . . . . . . 16  |-  ( X  e.  {  .0.  }  ->  ( ( O `  X )  =  1  <-> 
( O `  .0.  )  =  1 ) )
5955, 58syl5ibrcom 225 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( X  e.  {  .0.  }  ->  ( O `  X )  =  1 ) )
6059necon3ad 2614 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( O `  X )  =/=  1  ->  -.  X  e.  {  .0.  } ) )
6152, 60mpd 15 . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  {  .0.  } )
6244, 49, 61ssnelpssd 3803 . . . . . . . . . . . 12  |-  ( ph  ->  {  .0.  }  C.  ( K `  { X } ) )
63 php3 7711 . . . . . . . . . . . 12  |-  ( ( ( K `  { X } )  e.  Fin  /\ 
{  .0.  }  C.  ( K `  { X } ) )  ->  {  .0.  }  ~<  ( K `  { X } ) )
6437, 62, 63syl2anc 665 . . . . . . . . . . 11  |-  ( ph  ->  {  .0.  }  ~<  ( K `  { X } ) )
65 snfi 7604 . . . . . . . . . . . 12  |-  {  .0.  }  e.  Fin
66 hashsdom 12510 . . . . . . . . . . . 12  |-  ( ( {  .0.  }  e.  Fin  /\  ( K `  { X } )  e. 
Fin )  ->  (
( # `  {  .0.  } )  <  ( # `  ( K `  { X } ) )  <->  {  .0.  } 
~<  ( K `  { X } ) ) )
6765, 37, 66sylancr 667 . . . . . . . . . . 11  |-  ( ph  ->  ( ( # `  {  .0.  } )  <  ( # `
 ( K `  { X } ) )  <->  {  .0.  }  ~<  ( K `  { X } ) ) )
6864, 67mpbird 235 . . . . . . . . . 10  |-  ( ph  ->  ( # `  {  .0.  } )  <  ( # `
 ( K `  { X } ) ) )
6925, 68syl5eqbrr 4401 . . . . . . . . 9  |-  ( ph  ->  1  <  ( # `  ( K `  { X } ) ) )
70 1red 9609 . . . . . . . . . 10  |-  ( ph  ->  1  e.  RR )
71 hashcl 12488 . . . . . . . . . . . 12  |-  ( ( K `  { X } )  e.  Fin  ->  ( # `  ( K `  { X } ) )  e. 
NN0 )
7237, 71syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  ( K `  { X } ) )  e. 
NN0 )
7372nn0red 10877 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( K `  { X } ) )  e.  RR )
7421subg0cl 16768 . . . . . . . . . . . . 13  |-  ( W  e.  (SubGrp `  H
)  ->  .0.  e.  W )
75 ne0i 3710 . . . . . . . . . . . . 13  |-  (  .0. 
e.  W  ->  W  =/=  (/) )
761, 74, 753syl 18 . . . . . . . . . . . 12  |-  ( ph  ->  W  =/=  (/) )
77 hashnncl 12497 . . . . . . . . . . . . 13  |-  ( W  e.  Fin  ->  (
( # `  W )  e.  NN  <->  W  =/=  (/) ) )
7817, 77syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  W
)  e.  NN  <->  W  =/=  (/) ) )
7976, 78mpbird 235 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  W
)  e.  NN )
8079nngt0d 10604 . . . . . . . . . 10  |-  ( ph  ->  0  <  ( # `  W ) )
81 ltmul1 10406 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  ( # `  ( K `
 { X }
) )  e.  RR  /\  ( ( # `  W
)  e.  RR  /\  0  <  ( # `  W
) ) )  -> 
( 1  <  ( # `
 ( K `  { X } ) )  <-> 
( 1  x.  ( # `
 W ) )  <  ( ( # `  ( K `  { X } ) )  x.  ( # `  W
) ) ) )
8270, 73, 20, 80, 81syl112anc 1268 . . . . . . . . 9  |-  ( ph  ->  ( 1  <  ( # `
 ( K `  { X } ) )  <-> 
( 1  x.  ( # `
 W ) )  <  ( ( # `  ( K `  { X } ) )  x.  ( # `  W
) ) ) )
8369, 82mpbid 213 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  ( # `
 W ) )  <  ( ( # `  ( K `  { X } ) )  x.  ( # `  W
) ) )
8420recnd 9620 . . . . . . . . 9  |-  ( ph  ->  ( # `  W
)  e.  CC )
8584mulid2d 9612 . . . . . . . 8  |-  ( ph  ->  ( 1  x.  ( # `
 W ) )  =  ( # `  W
) )
86 pgpfac.l . . . . . . . . . 10  |-  .(+)  =  (
LSSum `  H )
87 eqid 2428 . . . . . . . . . 10  |-  (Cntz `  H )  =  (Cntz `  H )
88 pgpfac.i . . . . . . . . . 10  |-  ( ph  ->  ( ( K `  { X } )  i^i 
W )  =  {  .0.  } )
89 pgpfac.g . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  Abel )
903subgabl 17419 . . . . . . . . . . . 12  |-  ( ( G  e.  Abel  /\  U  e.  (SubGrp `  G )
)  ->  H  e.  Abel )
9189, 2, 90syl2anc 665 . . . . . . . . . . 11  |-  ( ph  ->  H  e.  Abel )
9287, 91, 41, 1ablcntzd 17438 . . . . . . . . . 10  |-  ( ph  ->  ( K `  { X } )  C_  (
(Cntz `  H ) `  W ) )
9386, 21, 87, 41, 1, 88, 92, 37, 17lsmhash 17298 . . . . . . . . 9  |-  ( ph  ->  ( # `  (
( K `  { X } )  .(+)  W ) )  =  ( (
# `  ( K `  { X } ) )  x.  ( # `  W ) ) )
94 pgpfac.s . . . . . . . . . 10  |-  ( ph  ->  ( ( K `  { X } )  .(+)  W )  =  U )
9594fveq2d 5829 . . . . . . . . 9  |-  ( ph  ->  ( # `  (
( K `  { X } )  .(+)  W ) )  =  ( # `  U ) )
9693, 95eqtr3d 2464 . . . . . . . 8  |-  ( ph  ->  ( ( # `  ( K `  { X } ) )  x.  ( # `  W
) )  =  (
# `  U )
)
9783, 85, 963brtr3d 4396 . . . . . . 7  |-  ( ph  ->  ( # `  W
)  <  ( # `  U
) )
9820, 97ltned 9722 . . . . . 6  |-  ( ph  ->  ( # `  W
)  =/=  ( # `  U ) )
99 fveq2 5825 . . . . . . 7  |-  ( W  =  U  ->  ( # `
 W )  =  ( # `  U
) )
10099necon3i 2633 . . . . . 6  |-  ( (
# `  W )  =/=  ( # `  U
)  ->  W  =/=  U )
10198, 100syl 17 . . . . 5  |-  ( ph  ->  W  =/=  U )
102 df-pss 3395 . . . . 5  |-  ( W 
C.  U  <->  ( W  C_  U  /\  W  =/= 
U ) )
1039, 101, 102sylanbrc 668 . . . 4  |-  ( ph  ->  W  C.  U )
104 psseq1 3495 . . . . . 6  |-  ( t  =  W  ->  (
t  C.  U  <->  W  C.  U
) )
105 eqeq2 2439 . . . . . . . 8  |-  ( t  =  W  ->  (
( G DProd  s )  =  t  <->  ( G DProd  s
)  =  W ) )
106105anbi2d 708 . . . . . . 7  |-  ( t  =  W  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  t )  <->  ( G dom DProd  s  /\  ( G DProd 
s )  =  W ) ) )
107106rexbidv 2878 . . . . . 6  |-  ( t  =  W  ->  ( E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  t )  <->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  W ) ) )
108104, 107imbi12d 321 . . . . 5  |-  ( t  =  W  ->  (
( t  C.  U  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  <-> 
( W  C.  U  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  W ) ) ) )
109108rspcv 3121 . . . 4  |-  ( W  e.  (SubGrp `  G
)  ->  ( A. t  e.  (SubGrp `  G
) ( t  C.  U  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  t ) )  ->  ( W  C.  U  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  W ) ) ) )
1107, 8, 103, 109syl3c 63 . . 3  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  W ) )
111 breq2 4370 . . . . 5  |-  ( s  =  a  ->  ( G dom DProd  s  <->  G dom DProd  a ) )
112 oveq2 6257 . . . . . 6  |-  ( s  =  a  ->  ( G DProd  s )  =  ( G DProd  a ) )
113112eqeq1d 2430 . . . . 5  |-  ( s  =  a  ->  (
( G DProd  s )  =  W  <->  ( G DProd  a
)  =  W ) )
114111, 113anbi12d 715 . . . 4  |-  ( s  =  a  ->  (
( G dom DProd  s  /\  ( G DProd  s )  =  W )  <->  ( G dom DProd  a  /\  ( G DProd 
a )  =  W ) ) )
115114cbvrexv 2997 . . 3  |-  ( E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  W )  <->  E. a  e. Word  C ( G dom DProd  a  /\  ( G DProd  a
)  =  W ) )
116110, 115sylib 199 . 2  |-  ( ph  ->  E. a  e. Word  C
( G dom DProd  a  /\  ( G DProd  a )  =  W ) )
117 pgpfac.c . . 3  |-  C  =  { r  e.  (SubGrp `  G )  |  ( Gs  r )  e.  (CycGrp 
i^i  ran pGrp  ) }
11889adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  G  e.  Abel )
119 pgpfac.p . . . 4  |-  ( ph  ->  P pGrp  G )
120119adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  P pGrp  G )
12110adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  B  e.  Fin )
1222adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  U  e.  (SubGrp `  G
) )
1238adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  A. t  e.  (SubGrp `  G ) ( t 
C.  U  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s
)  =  t ) ) )
124 pgpfac.e . . 3  |-  E  =  (gEx `  H )
12551adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  E  =/=  1 )
12638adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  X  e.  U )
12750adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  -> 
( O `  X
)  =  E )
1281adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  W  e.  (SubGrp `  H
) )
12988adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  -> 
( ( K `  { X } )  i^i 
W )  =  {  .0.  } )
13094adantr 466 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  -> 
( ( K `  { X } )  .(+)  W )  =  U )
131 simprl 762 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  -> 
a  e. Word  C )
132 simprrl 772 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  G dom DProd  a )
133 simprrr 773 . . 3  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  -> 
( G DProd  a )  =  W )
134 eqid 2428 . . 3  |-  ( a ++ 
<" ( K `  { X } ) "> )  =  ( a ++  <" ( K `
 { X }
) "> )
13511, 117, 118, 120, 121, 122, 123, 3, 31, 53, 124, 21, 86, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134pgpfaclem1 17657 . 2  |-  ( (
ph  /\  ( a  e. Word  C  /\  ( G dom DProd  a  /\  ( G DProd  a )  =  W ) ) )  ->  E. s  e. Word  C ( G dom DProd  s  /\  ( G DProd  s )  =  U ) )
136116, 135rexlimddv 2860 1  |-  ( ph  ->  E. s  e. Word  C
( G dom DProd  s  /\  ( G DProd  s )  =  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2599   A.wral 2714   E.wrex 2715   {crab 2718   _Vcvv 3022    i^i cin 3378    C_ wss 3379    C. wpss 3380   (/)c0 3704   {csn 3941   class class class wbr 4366   dom cdm 4796   ran crn 4797   ` cfv 5544  (class class class)co 6249    ~< csdm 7523   Fincfn 7524   RRcr 9489   0cc0 9490   1c1 9491    x. cmul 9495    < clt 9626   NNcn 10560   NN0cn0 10820   #chash 12465  Word cword 12604   ++ cconcat 12606   <"cs1 12607   Basecbs 15064   ↾s cress 15065   0gc0g 15281  Moorecmre 15431  mrClscmrc 15432  ACScacs 15434   Grpcgrp 16612  SubGrpcsubg 16754  Cntzccntz 16912   odcod 17108  gExcgex 17110   pGrp cpgp 17112   LSSumclsm 17229   Abelcabl 17374  CycGrpccyg 17455   DProd cdprd 17568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-om 6651  df-1st 6751  df-2nd 6752  df-supp 6870  df-tpos 6928  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-oadd 7141  df-er 7318  df-map 7429  df-ixp 7478  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-fsupp 7837  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-cda 8549  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-nn 10561  df-2 10619  df-n0 10821  df-z 10889  df-uz 11111  df-fz 11736  df-fzo 11867  df-seq 12164  df-hash 12466  df-word 12612  df-concat 12614  df-s1 12615  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-ress 15071  df-plusg 15146  df-0g 15283  df-gsum 15284  df-mre 15435  df-mrc 15436  df-acs 15438  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-mhm 16525  df-submnd 16526  df-grp 16616  df-minusg 16617  df-sbg 16618  df-mulg 16619  df-subg 16757  df-ghm 16824  df-gim 16866  df-cntz 16914  df-oppg 16940  df-od 17115  df-pgp 17119  df-lsm 17231  df-pj1 17232  df-cmn 17375  df-abl 17376  df-cyg 17456  df-dprd 17570
This theorem is referenced by:  pgpfaclem3  17659
  Copyright terms: Public domain W3C validator