MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Structured version   Unicode version

Theorem pgpfac1lem5 17108
Description: Lemma for pgpfac1 17109 (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac1.au  |-  ( ph  ->  A  e.  U )
pgpfac1.3  |-  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
Assertion
Ref Expression
pgpfac1lem5  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Distinct variable groups:    t, s,  .0.    A, s, t    .(+) , s, t    P, s, t    B, s, t    G, s, t    U, s, t    S, s, t    ph, s, t    K, s, t
Allowed substitution hints:    E( t, s)    O( t, s)

Proof of Theorem pgpfac1lem5
Dummy variables  b  u  v  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10  |-  ( ph  ->  B  e.  Fin )
2 pwfi 7817 . . . . . . . . . 10  |-  ( B  e.  Fin  <->  ~P B  e.  Fin )
31, 2sylib 196 . . . . . . . . 9  |-  ( ph  ->  ~P B  e.  Fin )
43adantr 465 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  ~P B  e.  Fin )
5 pgpfac1.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
65subgss 16180 . . . . . . . . . . 11  |-  ( v  e.  (SubGrp `  G
)  ->  v  C_  B )
763ad2ant2 1019 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  v  e.  (SubGrp `  G )  /\  ( v  C.  U  /\  A  e.  v
) )  ->  v  C_  B )
8 selpw 4004 . . . . . . . . . 10  |-  ( v  e.  ~P B  <->  v  C_  B )
97, 8sylibr 212 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  v  e.  (SubGrp `  G )  /\  ( v  C.  U  /\  A  e.  v
) )  ->  v  e.  ~P B )
109rabssdv 3565 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  C_  ~P B )
11 ssfi 7742 . . . . . . . 8  |-  ( ( ~P B  e.  Fin  /\ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  C_  ~P B )  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin )
124, 10, 11syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  S  C.  U
)  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin )
13 finnum 8332 . . . . . . 7  |-  ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  dom  card )
1412, 13syl 16 . . . . . 6  |-  ( (
ph  /\  S  C.  U
)  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  dom  card )
15 pgpfac1.s . . . . . . . . . 10  |-  S  =  ( K `  { A } )
16 pgpfac1.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Abel )
17 ablgrp 16781 . . . . . . . . . . . . 13  |-  ( G  e.  Abel  ->  G  e. 
Grp )
1816, 17syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  Grp )
195subgacs 16214 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
20 acsmre 15030 . . . . . . . . . . . 12  |-  ( (SubGrp `  G )  e.  (ACS
`  B )  -> 
(SubGrp `  G )  e.  (Moore `  B )
)
2118, 19, 203syl 20 . . . . . . . . . . 11  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  B )
)
22 pgpfac1.u . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
235subgss 16180 . . . . . . . . . . . . 13  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
2422, 23syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  B )
25 pgpfac1.au . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  U )
2624, 25sseldd 3490 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  B )
27 pgpfac1.k . . . . . . . . . . . 12  |-  K  =  (mrCls `  (SubGrp `  G
) )
2827mrcsncl 14990 . . . . . . . . . . 11  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  A  e.  B
)  ->  ( K `  { A } )  e.  (SubGrp `  G
) )
2921, 26, 28syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( K `  { A } )  e.  (SubGrp `  G ) )
3015, 29syl5eqel 2535 . . . . . . . . 9  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
3130adantr 465 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  S  e.  (SubGrp `  G ) )
32 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  S  C.  U
)
3325snssd 4160 . . . . . . . . . . . . 13  |-  ( ph  ->  { A }  C_  U )
3433, 24sstrd 3499 . . . . . . . . . . . 12  |-  ( ph  ->  { A }  C_  B )
3521, 27, 34mrcssidd 15003 . . . . . . . . . . 11  |-  ( ph  ->  { A }  C_  ( K `  { A } ) )
3635, 15syl6sseqr 3536 . . . . . . . . . 10  |-  ( ph  ->  { A }  C_  S )
37 snssg 4148 . . . . . . . . . . 11  |-  ( A  e.  B  ->  ( A  e.  S  <->  { A }  C_  S ) )
3826, 37syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( A  e.  S  <->  { A }  C_  S
) )
3936, 38mpbird 232 . . . . . . . . 9  |-  ( ph  ->  A  e.  S )
4039adantr 465 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  A  e.  S )
41 psseq1 3576 . . . . . . . . . 10  |-  ( v  =  S  ->  (
v  C.  U  <->  S  C.  U
) )
42 eleq2 2516 . . . . . . . . . 10  |-  ( v  =  S  ->  ( A  e.  v  <->  A  e.  S ) )
4341, 42anbi12d 710 . . . . . . . . 9  |-  ( v  =  S  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( S  C.  U  /\  A  e.  S
) ) )
4443rspcev 3196 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  ( S  C.  U  /\  A  e.  S ) )  ->  E. v  e.  (SubGrp `  G ) ( v 
C.  U  /\  A  e.  v ) )
4531, 32, 40, 44syl12anc 1227 . . . . . . 7  |-  ( (
ph  /\  S  C.  U
)  ->  E. v  e.  (SubGrp `  G )
( v  C.  U  /\  A  e.  v
) )
46 rabn0 3791 . . . . . . 7  |-  ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/)  <->  E. v  e.  (SubGrp `  G ) ( v 
C.  U  /\  A  e.  v ) )
4745, 46sylibr 212 . . . . . 6  |-  ( (
ph  /\  S  C.  U
)  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/) )
48 simpr1 1003 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  C_ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )
49 simpr2 1004 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  =/=  (/) )
5012adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  Fin )
51 ssfi 7742 . . . . . . . . . . 11  |-  ( ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin  /\  u  C_ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )  ->  u  e.  Fin )
5250, 48, 51syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  e.  Fin )
53 simpr3 1005 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  -> [ C.]  Or  u
)
54 fin1a2lem10 8792 . . . . . . . . . 10  |-  ( ( u  =/=  (/)  /\  u  e.  Fin  /\ [ C.]  Or  u
)  ->  U. u  e.  u )
5549, 52, 53, 54syl3anc 1229 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  U. u  e.  u )
5648, 55sseldd 3490 . . . . . . . 8  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )
5756ex 434 . . . . . . 7  |-  ( (
ph  /\  S  C.  U
)  ->  ( (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
)  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )
5857alrimiv 1706 . . . . . 6  |-  ( (
ph  /\  S  C.  U
)  ->  A. u
( ( u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
)  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )
59 zornn0g 8888 . . . . . 6  |-  ( ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  dom  card  /\  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/)  /\  A. u
( ( u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
)  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )  ->  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w )
6014, 47, 58, 59syl3anc 1229 . . . . 5  |-  ( (
ph  /\  S  C.  U
)  ->  E. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w
)
61 psseq1 3576 . . . . . . . 8  |-  ( v  =  w  ->  (
v  C.  U  <->  w  C.  U
) )
62 eleq2 2516 . . . . . . . 8  |-  ( v  =  w  ->  ( A  e.  v  <->  A  e.  w ) )
6361, 62anbi12d 710 . . . . . . 7  |-  ( v  =  w  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( w  C.  U  /\  A  e.  w
) ) )
6463ralrab 3247 . . . . . 6  |-  ( A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w  <->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6564rexbii 2945 . . . . 5  |-  ( E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w  <->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6660, 65sylib 196 . . . 4  |-  ( (
ph  /\  S  C.  U
)  ->  E. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6766ex 434 . . 3  |-  ( ph  ->  ( S  C.  U  ->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
68 pgpfac1.3 . . . . 5  |-  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
69 psseq1 3576 . . . . . . 7  |-  ( v  =  s  ->  (
v  C.  U  <->  s  C.  U
) )
70 eleq2 2516 . . . . . . 7  |-  ( v  =  s  ->  ( A  e.  v  <->  A  e.  s ) )
7169, 70anbi12d 710 . . . . . 6  |-  ( v  =  s  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( s  C.  U  /\  A  e.  s ) ) )
7271ralrab 3247 . . . . 5  |-  ( A. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  A. s  e.  (SubGrp `  G )
( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
7368, 72sylibr 212 . . . 4  |-  ( ph  ->  A. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) )
74 r19.29 2978 . . . . 5  |-  ( ( A. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  /\  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )
7571elrab 3243 . . . . . . 7  |-  ( s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  <->  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )
76 ineq2 3679 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( S  i^i  t )  =  ( S  i^i  v
) )
7776eqeq1d 2445 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
( S  i^i  t
)  =  {  .0.  }  <-> 
( S  i^i  v
)  =  {  .0.  } ) )
78 oveq2 6289 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( S  .(+)  t )  =  ( S  .(+)  v ) )
7978eqeq1d 2445 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
( S  .(+)  t )  =  s  <->  ( S  .(+) 
v )  =  s ) )
8077, 79anbi12d 710 . . . . . . . . . 10  |-  ( t  =  v  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s ) ) )
8180cbvrexv 3071 . . . . . . . . 9  |-  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  <->  E. v  e.  (SubGrp `  G )
( ( S  i^i  v )  =  {  .0.  }  /\  ( S 
.(+)  v )  =  s ) )
82 simprrl 765 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
s  C.  U )
8382ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  s  C.  U
)
84 simpr2 1004 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( S  .(+) 
v )  =  s )
8584psseq1d 3581 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( ( S  .(+)  v )  C.  U 
<->  s  C.  U )
)
8683, 85mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( S  .(+) 
v )  C.  U
)
87 pssdif 3875 . . . . . . . . . . . . . . 15  |-  ( ( S  .(+)  v )  C.  U  ->  ( U  \  ( S  .(+)  v ) )  =/=  (/) )
88 n0 3780 . . . . . . . . . . . . . . 15  |-  ( ( U  \  ( S 
.(+)  v ) )  =/=  (/)  <->  E. b  b  e.  ( U  \  ( S  .(+)  v ) ) )
8987, 88sylib 196 . . . . . . . . . . . . . 14  |-  ( ( S  .(+)  v )  C.  U  ->  E. b 
b  e.  ( U 
\  ( S  .(+)  v ) ) )
9086, 89syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  E. b 
b  e.  ( U 
\  ( S  .(+)  v ) ) )
91 pgpfac1.o . . . . . . . . . . . . . . . 16  |-  O  =  ( od `  G
)
92 pgpfac1.e . . . . . . . . . . . . . . . 16  |-  E  =  (gEx `  G )
93 pgpfac1.z . . . . . . . . . . . . . . . 16  |-  .0.  =  ( 0g `  G )
94 pgpfac1.l . . . . . . . . . . . . . . . 16  |-  .(+)  =  (
LSSum `  G )
95 pgpfac1.p . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  P pGrp  G )
9695ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  P pGrp  G )
9716ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  G  e.  Abel )
981ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  B  e.  Fin )
99 pgpfac1.oe . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( O `  A
)  =  E )
10099ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( O `  A )  =  E )
10122ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  U  e.  (SubGrp `  G )
)
10225ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A  e.  U )
103 simplr 755 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  v  e.  (SubGrp `  G )
)
104 simprl1 1042 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  i^i  v )  =  {  .0.  } )
10586adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  C.  U )
106105pssssd 3586 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  C_  U )
107 simprl3 1044 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) )
10884adantrr 716 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  =  s )
109 psseq1 3576 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( S  .(+)  v )  =  s  ->  ( ( S  .(+)  v )  C.  y  <->  s  C.  y
) )
110109notbid 294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  .(+)  v )  =  s  ->  ( -.  ( S  .(+)  v ) 
C.  y  <->  -.  s  C.  y ) )
111110imbi2d 316 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S  .(+)  v )  =  s  ->  ( ( ( y  C.  U  /\  A  e.  y
)  ->  -.  ( S  .(+)  v )  C.  y )  <->  ( (
y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y
) ) )
112111ralbidv 2882 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  .(+)  v )  =  s  ->  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v ) 
C.  y )  <->  A. y  e.  (SubGrp `  G )
( ( y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y ) ) )
113 psseq1 3576 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  (
y  C.  U  <->  w  C.  U
) )
114 eleq2 2516 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  ( A  e.  y  <->  A  e.  w ) )
115113, 114anbi12d 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  w  ->  (
( y  C.  U  /\  A  e.  y
)  <->  ( w  C.  U  /\  A  e.  w
) ) )
116 psseq2 3577 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  (
s  C.  y  <->  s  C.  w
) )
117116notbid 294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  w  ->  ( -.  s  C.  y  <->  -.  s  C.  w ) )
118115, 117imbi12d 320 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  w  ->  (
( ( y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y )  <->  ( (
w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
119118cbvralv 3070 . . . . . . . . . . . . . . . . . . 19  |-  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  s  C.  y )  <->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) )
120112, 119syl6bb 261 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  .(+)  v )  =  s  ->  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v ) 
C.  y )  <->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) ) )
121108, 120syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( A. y  e.  (SubGrp `  G ) ( ( y  C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v )  C.  y )  <->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
122107, 121mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A. y  e.  (SubGrp `  G )
( ( y  C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v )  C.  y ) )
123 simprr 757 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  b  e.  ( U  \  ( S  .(+)  v ) ) )
124 eqid 2443 . . . . . . . . . . . . . . . 16  |-  (.g `  G
)  =  (.g `  G
)
12527, 15, 5, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 122, 123, 124pgpfac1lem4 17107 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
126125expr 615 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( b  e.  ( U  \  ( S  .(+)  v ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
127126exlimdv 1711 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( E. b  b  e.  ( U  \  ( S  .(+)  v ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) )
12890, 127mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
1291283exp2 1215 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  ->  ( ( S  i^i  v )  =  {  .0.  }  ->  ( ( S  .(+)  v )  =  s  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) ) )
130129impd 431 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  ->  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s )  ->  ( A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
131130rexlimdva 2935 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( E. v  e.  (SubGrp `  G )
( ( S  i^i  v )  =  {  .0.  }  /\  ( S 
.(+)  v )  =  s )  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
13281, 131syl5bi 217 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
133132impd 431 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13475, 133sylan2b 475 . . . . . 6  |-  ( (
ph  /\  s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )  ->  (
( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
135134rexlimdva 2935 . . . . 5  |-  ( ph  ->  ( E. s  e. 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13674, 135syl5 32 . . . 4  |-  ( ph  ->  ( ( A. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  /\  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13773, 136mpand 675 . . 3  |-  ( ph  ->  ( E. s  e. 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) )
13867, 137syld 44 . 2  |-  ( ph  ->  ( S  C.  U  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
139930subg 16204 . . . . . 6  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
14018, 139syl 16 . . . . 5  |-  ( ph  ->  {  .0.  }  e.  (SubGrp `  G ) )
141140adantr 465 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  {  .0.  }  e.  (SubGrp `  G
) )
14293subg0cl 16187 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  e.  S )
14330, 142syl 16 . . . . . . 7  |-  ( ph  ->  .0.  e.  S )
144143snssd 4160 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  S )
145144adantr 465 . . . . 5  |-  ( (
ph  /\  S  =  U )  ->  {  .0.  } 
C_  S )
146 sseqin2 3702 . . . . 5  |-  ( {  .0.  }  C_  S  <->  ( S  i^i  {  .0.  } )  =  {  .0.  } )
147145, 146sylib 196 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  ( S  i^i  {  .0.  }
)  =  {  .0.  } )
14894lsmss2 16664 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  {  .0.  }  e.  (SubGrp `  G )  /\  {  .0.  }  C_  S )  ->  ( S  .(+)  {  .0.  } )  =  S )
14930, 140, 144, 148syl3anc 1229 . . . . . 6  |-  ( ph  ->  ( S  .(+)  {  .0.  } )  =  S )
150149eqeq1d 2445 . . . . 5  |-  ( ph  ->  ( ( S  .(+)  {  .0.  } )  =  U  <->  S  =  U
) )
151150biimpar 485 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  ( S  .(+)  {  .0.  }
)  =  U )
152 ineq2 3679 . . . . . . 7  |-  ( t  =  {  .0.  }  ->  ( S  i^i  t
)  =  ( S  i^i  {  .0.  }
) )
153152eqeq1d 2445 . . . . . 6  |-  ( t  =  {  .0.  }  ->  ( ( S  i^i  t )  =  {  .0.  }  <->  ( S  i^i  {  .0.  } )  =  {  .0.  } ) )
154 oveq2 6289 . . . . . . 7  |-  ( t  =  {  .0.  }  ->  ( S  .(+)  t )  =  ( S  .(+)  {  .0.  } ) )
155154eqeq1d 2445 . . . . . 6  |-  ( t  =  {  .0.  }  ->  ( ( S  .(+)  t )  =  U  <->  ( S  .(+)  {  .0.  } )  =  U ) )
156153, 155anbi12d 710 . . . . 5  |-  ( t  =  {  .0.  }  ->  ( ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U )  <->  ( ( S  i^i  {  .0.  }
)  =  {  .0.  }  /\  ( S  .(+)  {  .0.  } )  =  U ) ) )
157156rspcev 3196 . . . 4  |-  ( ( {  .0.  }  e.  (SubGrp `  G )  /\  ( ( S  i^i  {  .0.  } )  =  {  .0.  }  /\  ( S  .(+)  {  .0.  } )  =  U ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
158141, 147, 151, 157syl12anc 1227 . . 3  |-  ( (
ph  /\  S  =  U )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
159158ex 434 . 2  |-  ( ph  ->  ( S  =  U  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
16027mrcsscl 14998 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  { A }  C_  U  /\  U  e.  (SubGrp `  G ) )  -> 
( K `  { A } )  C_  U
)
16121, 33, 22, 160syl3anc 1229 . . . 4  |-  ( ph  ->  ( K `  { A } )  C_  U
)
16215, 161syl5eqss 3533 . . 3  |-  ( ph  ->  S  C_  U )
163 sspss 3588 . . 3  |-  ( S 
C_  U  <->  ( S  C.  U  \/  S  =  U ) )
164162, 163sylib 196 . 2  |-  ( ph  ->  ( S  C.  U  \/  S  =  U
) )
165138, 159, 164mpjaod 381 1  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 974   A.wal 1381    = wceq 1383   E.wex 1599    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   {crab 2797    \ cdif 3458    i^i cin 3460    C_ wss 3461    C. wpss 3462   (/)c0 3770   ~Pcpw 3997   {csn 4014   U.cuni 4234   class class class wbr 4437    Or wor 4789   dom cdm 4989   ` cfv 5578  (class class class)co 6281   [ C.] crpss 6564   Fincfn 7518   cardccrd 8319   Basecbs 14613   0gc0g 14818  Moorecmre 14960  mrClscmrc 14961  ACScacs 14963   Grpcgrp 16031  .gcmg 16034  SubGrpcsubg 16173   odcod 16527  gExcgex 16528   pGrp cpgp 16529   LSSumclsm 16632   Abelcabl 16777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-disj 4408  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-rpss 6565  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-omul 7137  df-er 7313  df-ec 7315  df-qs 7319  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-sup 7903  df-oi 7938  df-card 8323  df-acn 8326  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11092  df-q 11193  df-rp 11231  df-fz 11683  df-fzo 11806  df-fl 11910  df-mod 11978  df-seq 12089  df-exp 12148  df-fac 12335  df-bc 12362  df-hash 12387  df-cj 12913  df-re 12914  df-im 12915  df-sqrt 13049  df-abs 13050  df-clim 13292  df-sum 13490  df-dvds 13968  df-gcd 14126  df-prm 14199  df-pc 14342  df-ndx 14616  df-slot 14617  df-base 14618  df-sets 14619  df-ress 14620  df-plusg 14691  df-0g 14820  df-mre 14964  df-mrc 14965  df-acs 14967  df-mgm 15850  df-sgrp 15889  df-mnd 15899  df-submnd 15945  df-grp 16035  df-minusg 16036  df-sbg 16037  df-mulg 16038  df-subg 16176  df-eqg 16178  df-ga 16306  df-cntz 16333  df-od 16531  df-gex 16532  df-pgp 16533  df-lsm 16634  df-cmn 16778  df-abl 16779
This theorem is referenced by:  pgpfac1  17109
  Copyright terms: Public domain W3C validator