MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Unicode version

Theorem pgpfac1lem5 15592
Description: Lemma for pgpfac1 15593 (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac1.au  |-  ( ph  ->  A  e.  U )
pgpfac1.3  |-  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
Assertion
Ref Expression
pgpfac1lem5  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Distinct variable groups:    t, s,  .0.    A, s, t    .(+) , s, t    P, s, t    B, s, t    G, s, t    U, s, t    S, s, t    ph, s, t    K, s, t
Allowed substitution hints:    E( t, s)    O( t, s)

Proof of Theorem pgpfac1lem5
Dummy variables  b  u  v  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10  |-  ( ph  ->  B  e.  Fin )
2 pwfi 7360 . . . . . . . . . 10  |-  ( B  e.  Fin  <->  ~P B  e.  Fin )
31, 2sylib 189 . . . . . . . . 9  |-  ( ph  ->  ~P B  e.  Fin )
43adantr 452 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  ~P B  e.  Fin )
5 pgpfac1.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
65subgss 14900 . . . . . . . . . . 11  |-  ( v  e.  (SubGrp `  G
)  ->  v  C_  B )
763ad2ant2 979 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  v  e.  (SubGrp `  G )  /\  ( v  C.  U  /\  A  e.  v
) )  ->  v  C_  B )
8 vex 2919 . . . . . . . . . . 11  |-  v  e. 
_V
98elpw 3765 . . . . . . . . . 10  |-  ( v  e.  ~P B  <->  v  C_  B )
107, 9sylibr 204 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  v  e.  (SubGrp `  G )  /\  ( v  C.  U  /\  A  e.  v
) )  ->  v  e.  ~P B )
1110rabssdv 3383 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  C_  ~P B )
12 ssfi 7288 . . . . . . . 8  |-  ( ( ~P B  e.  Fin  /\ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  C_  ~P B )  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin )
134, 11, 12syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  S  C.  U )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  Fin )
14 finnum 7791 . . . . . . 7  |-  ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  dom  card )
1513, 14syl 16 . . . . . 6  |-  ( (
ph  /\  S  C.  U )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  dom  card )
16 pgpfac1.s . . . . . . . . . 10  |-  S  =  ( K `  { A } )
17 pgpfac1.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Abel )
18 ablgrp 15372 . . . . . . . . . . . . 13  |-  ( G  e.  Abel  ->  G  e. 
Grp )
1917, 18syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  Grp )
205subgacs 14930 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
21 acsmre 13832 . . . . . . . . . . . 12  |-  ( (SubGrp `  G )  e.  (ACS
`  B )  -> 
(SubGrp `  G )  e.  (Moore `  B )
)
2219, 20, 213syl 19 . . . . . . . . . . 11  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  B )
)
23 pgpfac1.u . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
245subgss 14900 . . . . . . . . . . . . 13  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
2523, 24syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  B )
26 pgpfac1.au . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  U )
2725, 26sseldd 3309 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  B )
28 pgpfac1.k . . . . . . . . . . . 12  |-  K  =  (mrCls `  (SubGrp `  G
) )
2928mrcsncl 13792 . . . . . . . . . . 11  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  A  e.  B
)  ->  ( K `  { A } )  e.  (SubGrp `  G
) )
3022, 27, 29syl2anc 643 . . . . . . . . . 10  |-  ( ph  ->  ( K `  { A } )  e.  (SubGrp `  G ) )
3116, 30syl5eqel 2488 . . . . . . . . 9  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
3231adantr 452 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  S  e.  (SubGrp `  G )
)
33 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  S  C.  U )
3426snssd 3903 . . . . . . . . . . . . 13  |-  ( ph  ->  { A }  C_  U )
3534, 25sstrd 3318 . . . . . . . . . . . 12  |-  ( ph  ->  { A }  C_  B )
3622, 28, 35mrcssidd 13805 . . . . . . . . . . 11  |-  ( ph  ->  { A }  C_  ( K `  { A } ) )
3736, 16syl6sseqr 3355 . . . . . . . . . 10  |-  ( ph  ->  { A }  C_  S )
38 snssg 3892 . . . . . . . . . . 11  |-  ( A  e.  B  ->  ( A  e.  S  <->  { A }  C_  S ) )
3927, 38syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( A  e.  S  <->  { A }  C_  S
) )
4037, 39mpbird 224 . . . . . . . . 9  |-  ( ph  ->  A  e.  S )
4140adantr 452 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U )  ->  A  e.  S )
42 psseq1 3394 . . . . . . . . . 10  |-  ( v  =  S  ->  (
v  C.  U  <->  S  C.  U ) )
43 eleq2 2465 . . . . . . . . . 10  |-  ( v  =  S  ->  ( A  e.  v  <->  A  e.  S ) )
4442, 43anbi12d 692 . . . . . . . . 9  |-  ( v  =  S  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( S  C.  U  /\  A  e.  S
) ) )
4544rspcev 3012 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  ( S  C.  U  /\  A  e.  S ) )  ->  E. v  e.  (SubGrp `  G ) ( v 
C.  U  /\  A  e.  v ) )
4632, 33, 41, 45syl12anc 1182 . . . . . . 7  |-  ( (
ph  /\  S  C.  U )  ->  E. v  e.  (SubGrp `  G )
( v  C.  U  /\  A  e.  v
) )
47 rabn0 3607 . . . . . . 7  |-  ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/)  <->  E. v  e.  (SubGrp `  G ) ( v 
C.  U  /\  A  e.  v ) )
4846, 47sylibr 204 . . . . . 6  |-  ( (
ph  /\  S  C.  U )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  =/=  (/) )
49 simpr1 963 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  C_ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )
50 simpr2 964 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  =/=  (/) )
5113adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  Fin )
52 ssfi 7288 . . . . . . . . . . 11  |-  ( ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin  /\  u  C_ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )  ->  u  e.  Fin )
5351, 49, 52syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  e.  Fin )
54 simpr3 965 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  -> [ C.]  Or  u )
55 fin1a2lem10 8245 . . . . . . . . . 10  |-  ( ( u  =/=  (/)  /\  u  e.  Fin  /\ [ C.]  Or  u
)  ->  U. u  e.  u )
5650, 53, 54, 55syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  U. u  e.  u )
5749, 56sseldd 3309 . . . . . . . 8  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )
5857ex 424 . . . . . . 7  |-  ( (
ph  /\  S  C.  U )  ->  (
( u  C_  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
)  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )
5958alrimiv 1638 . . . . . 6  |-  ( (
ph  /\  S  C.  U )  ->  A. u
( ( u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )
60 zornn0g 8341 . . . . . 6  |-  ( ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  dom  card  /\  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/)  /\  A. u
( ( u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )  ->  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w )
6115, 48, 59, 60syl3anc 1184 . . . . 5  |-  ( (
ph  /\  S  C.  U )  ->  E. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w
)
62 psseq1 3394 . . . . . . . 8  |-  ( v  =  w  ->  (
v  C.  U  <->  w  C.  U ) )
63 eleq2 2465 . . . . . . . 8  |-  ( v  =  w  ->  ( A  e.  v  <->  A  e.  w ) )
6462, 63anbi12d 692 . . . . . . 7  |-  ( v  =  w  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( w  C.  U  /\  A  e.  w
) ) )
6564ralrab 3056 . . . . . 6  |-  ( A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w  <->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6665rexbii 2691 . . . . 5  |-  ( E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w  <->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6761, 66sylib 189 . . . 4  |-  ( (
ph  /\  S  C.  U )  ->  E. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6867ex 424 . . 3  |-  ( ph  ->  ( S  C.  U  ->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
69 pgpfac1.3 . . . . 5  |-  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
70 psseq1 3394 . . . . . . 7  |-  ( v  =  s  ->  (
v  C.  U  <->  s  C.  U ) )
71 eleq2 2465 . . . . . . 7  |-  ( v  =  s  ->  ( A  e.  v  <->  A  e.  s ) )
7270, 71anbi12d 692 . . . . . 6  |-  ( v  =  s  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( s  C.  U  /\  A  e.  s ) ) )
7372ralrab 3056 . . . . 5  |-  ( A. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  A. s  e.  (SubGrp `  G )
( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
7469, 73sylibr 204 . . . 4  |-  ( ph  ->  A. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) )
75 r19.29 2806 . . . . 5  |-  ( ( A. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  /\  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )
7672elrab 3052 . . . . . . 7  |-  ( s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  <->  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )
77 ineq2 3496 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( S  i^i  t )  =  ( S  i^i  v
) )
7877eqeq1d 2412 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
( S  i^i  t
)  =  {  .0.  }  <-> 
( S  i^i  v
)  =  {  .0.  } ) )
79 oveq2 6048 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( S  .(+)  t )  =  ( S  .(+)  v ) )
8079eqeq1d 2412 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
( S  .(+)  t )  =  s  <->  ( S  .(+) 
v )  =  s ) )
8178, 80anbi12d 692 . . . . . . . . . 10  |-  ( t  =  v  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s ) ) )
8281cbvrexv 2893 . . . . . . . . 9  |-  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  <->  E. v  e.  (SubGrp `  G )
( ( S  i^i  v )  =  {  .0.  }  /\  ( S 
.(+)  v )  =  s ) )
83 simprrl 741 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
s  C.  U )
8483ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  s  C.  U )
85 simpr2 964 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( S  .(+) 
v )  =  s )
8685psseq1d 3399 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( ( S  .(+)  v )  C.  U 
<->  s  C.  U ) )
8784, 86mpbird 224 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( S  .(+) 
v )  C.  U
)
88 pssdif 3650 . . . . . . . . . . . . . . 15  |-  ( ( S  .(+)  v )  C.  U  ->  ( U 
\  ( S  .(+)  v ) )  =/=  (/) )
89 n0 3597 . . . . . . . . . . . . . . 15  |-  ( ( U  \  ( S 
.(+)  v ) )  =/=  (/)  <->  E. b  b  e.  ( U  \  ( S  .(+)  v ) ) )
9088, 89sylib 189 . . . . . . . . . . . . . 14  |-  ( ( S  .(+)  v )  C.  U  ->  E. b 
b  e.  ( U 
\  ( S  .(+)  v ) ) )
9187, 90syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  E. b 
b  e.  ( U 
\  ( S  .(+)  v ) ) )
92 pgpfac1.o . . . . . . . . . . . . . . . 16  |-  O  =  ( od `  G
)
93 pgpfac1.e . . . . . . . . . . . . . . . 16  |-  E  =  (gEx `  G )
94 pgpfac1.z . . . . . . . . . . . . . . . 16  |-  .0.  =  ( 0g `  G )
95 pgpfac1.l . . . . . . . . . . . . . . . 16  |-  .(+)  =  (
LSSum `  G )
96 pgpfac1.p . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  P pGrp  G )
9796ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  P pGrp  G )
9817ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  G  e.  Abel )
991ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  B  e.  Fin )
100 pgpfac1.oe . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( O `  A
)  =  E )
101100ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( O `  A )  =  E )
10223ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  U  e.  (SubGrp `  G )
)
10326ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A  e.  U )
104 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  v  e.  (SubGrp `  G )
)
105 simprl1 1002 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  i^i  v )  =  {  .0.  } )
10687adantrr 698 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  C.  U )
107106pssssd 3404 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  C_  U )
108 simprl3 1004 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) )
10985adantrr 698 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  =  s )
110 psseq1 3394 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( S  .(+)  v )  =  s  ->  ( ( S  .(+)  v )  C.  y  <->  s  C.  y
) )
111110notbid 286 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  .(+)  v )  =  s  ->  ( -.  ( S  .(+)  v ) 
C.  y  <->  -.  s  C.  y ) )
112111imbi2d 308 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S  .(+)  v )  =  s  ->  ( ( ( y  C.  U  /\  A  e.  y
)  ->  -.  ( S  .(+)  v )  C.  y )  <->  ( (
y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y
) ) )
113112ralbidv 2686 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  .(+)  v )  =  s  ->  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v ) 
C.  y )  <->  A. y  e.  (SubGrp `  G )
( ( y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y ) ) )
114 psseq1 3394 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  (
y  C.  U  <->  w  C.  U ) )
115 eleq2 2465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  ( A  e.  y  <->  A  e.  w ) )
116114, 115anbi12d 692 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  w  ->  (
( y  C.  U  /\  A  e.  y
)  <->  ( w  C.  U  /\  A  e.  w
) ) )
117 psseq2 3395 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  (
s  C.  y  <->  s  C.  w ) )
118117notbid 286 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  w  ->  ( -.  s  C.  y  <->  -.  s  C.  w ) )
119116, 118imbi12d 312 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  w  ->  (
( ( y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y )  <->  ( (
w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
120119cbvralv 2892 . . . . . . . . . . . . . . . . . . 19  |-  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  s  C.  y )  <->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) )
121113, 120syl6bb 253 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  .(+)  v )  =  s  ->  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v ) 
C.  y )  <->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) ) )
122109, 121syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( A. y  e.  (SubGrp `  G ) ( ( y  C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v )  C.  y )  <->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
123108, 122mpbird 224 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A. y  e.  (SubGrp `  G )
( ( y  C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v )  C.  y ) )
124 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  b  e.  ( U  \  ( S  .(+)  v ) ) )
125 eqid 2404 . . . . . . . . . . . . . . . 16  |-  (.g `  G
)  =  (.g `  G
)
12628, 16, 5, 92, 93, 94, 95, 97, 98, 99, 101, 102, 103, 104, 105, 107, 123, 124, 125pgpfac1lem4 15591 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
127126expr 599 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( b  e.  ( U  \  ( S  .(+)  v ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
128127exlimdv 1643 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( E. b  b  e.  ( U  \  ( S  .(+)  v ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) )
12991, 128mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
1301293exp2 1171 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  ->  ( ( S  i^i  v )  =  {  .0.  }  ->  ( ( S  .(+)  v )  =  s  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) ) )
131130imp3a 421 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  ->  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s )  ->  ( A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
132131rexlimdva 2790 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( E. v  e.  (SubGrp `  G )
( ( S  i^i  v )  =  {  .0.  }  /\  ( S 
.(+)  v )  =  s )  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
13382, 132syl5bi 209 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
134133imp3a 421 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13576, 134sylan2b 462 . . . . . 6  |-  ( (
ph  /\  s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )  ->  (
( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
136135rexlimdva 2790 . . . . 5  |-  ( ph  ->  ( E. s  e. 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13775, 136syl5 30 . . . 4  |-  ( ph  ->  ( ( A. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  /\  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13874, 137mpand 657 . . 3  |-  ( ph  ->  ( E. s  e. 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) )
13968, 138syld 42 . 2  |-  ( ph  ->  ( S  C.  U  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
140940subg 14920 . . . . . 6  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
14119, 140syl 16 . . . . 5  |-  ( ph  ->  {  .0.  }  e.  (SubGrp `  G ) )
142141adantr 452 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  {  .0.  }  e.  (SubGrp `  G
) )
14394subg0cl 14907 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  e.  S )
14431, 143syl 16 . . . . . . 7  |-  ( ph  ->  .0.  e.  S )
145144snssd 3903 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  S )
146145adantr 452 . . . . 5  |-  ( (
ph  /\  S  =  U )  ->  {  .0.  } 
C_  S )
147 sseqin2 3520 . . . . 5  |-  ( {  .0.  }  C_  S  <->  ( S  i^i  {  .0.  } )  =  {  .0.  } )
148146, 147sylib 189 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  ( S  i^i  {  .0.  }
)  =  {  .0.  } )
14995lsmss2 15255 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  {  .0.  }  e.  (SubGrp `  G )  /\  {  .0.  }  C_  S )  ->  ( S  .(+)  {  .0.  } )  =  S )
15031, 141, 145, 149syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( S  .(+)  {  .0.  } )  =  S )
151150eqeq1d 2412 . . . . 5  |-  ( ph  ->  ( ( S  .(+)  {  .0.  } )  =  U  <->  S  =  U
) )
152151biimpar 472 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  ( S  .(+)  {  .0.  }
)  =  U )
153 ineq2 3496 . . . . . . 7  |-  ( t  =  {  .0.  }  ->  ( S  i^i  t
)  =  ( S  i^i  {  .0.  }
) )
154153eqeq1d 2412 . . . . . 6  |-  ( t  =  {  .0.  }  ->  ( ( S  i^i  t )  =  {  .0.  }  <->  ( S  i^i  {  .0.  } )  =  {  .0.  } ) )
155 oveq2 6048 . . . . . . 7  |-  ( t  =  {  .0.  }  ->  ( S  .(+)  t )  =  ( S  .(+)  {  .0.  } ) )
156155eqeq1d 2412 . . . . . 6  |-  ( t  =  {  .0.  }  ->  ( ( S  .(+)  t )  =  U  <->  ( S  .(+)  {  .0.  } )  =  U ) )
157154, 156anbi12d 692 . . . . 5  |-  ( t  =  {  .0.  }  ->  ( ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U )  <->  ( ( S  i^i  {  .0.  }
)  =  {  .0.  }  /\  ( S  .(+)  {  .0.  } )  =  U ) ) )
158157rspcev 3012 . . . 4  |-  ( ( {  .0.  }  e.  (SubGrp `  G )  /\  ( ( S  i^i  {  .0.  } )  =  {  .0.  }  /\  ( S  .(+)  {  .0.  } )  =  U ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
159142, 148, 152, 158syl12anc 1182 . . 3  |-  ( (
ph  /\  S  =  U )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
160159ex 424 . 2  |-  ( ph  ->  ( S  =  U  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
16128mrcsscl 13800 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  { A }  C_  U  /\  U  e.  (SubGrp `  G ) )  -> 
( K `  { A } )  C_  U
)
16222, 34, 23, 161syl3anc 1184 . . . 4  |-  ( ph  ->  ( K `  { A } )  C_  U
)
16316, 162syl5eqss 3352 . . 3  |-  ( ph  ->  S  C_  U )
164 sspss 3406 . . 3  |-  ( S 
C_  U  <->  ( S  C.  U  \/  S  =  U ) )
165163, 164sylib 189 . 2  |-  ( ph  ->  ( S  C.  U  \/  S  =  U
) )
166139, 160, 165mpjaod 371 1  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   A.wal 1546   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   {crab 2670    \ cdif 3277    i^i cin 3279    C_ wss 3280    C. wpss 3281   (/)c0 3588   ~Pcpw 3759   {csn 3774   U.cuni 3975   class class class wbr 4172    Or wor 4462   dom cdm 4837   ` cfv 5413  (class class class)co 6040   [ C.] crpss 6480   Fincfn 7068   cardccrd 7778   Basecbs 13424   0gc0g 13678  Moorecmre 13762  mrClscmrc 13763  ACScacs 13765   Grpcgrp 14640  .gcmg 14644  SubGrpcsubg 14893   odcod 15118  gExcgex 15119   pGrp cpgp 15120   LSSumclsm 15223   Abelcabel 15368
This theorem is referenced by:  pgpfac1  15593
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-disj 4143  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-rpss 6481  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-omul 6688  df-er 6864  df-ec 6866  df-qs 6870  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-acn 7785  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-eqg 14898  df-ga 15022  df-cntz 15071  df-od 15122  df-gex 15123  df-pgp 15124  df-lsm 15225  df-cmn 15369  df-abl 15370
  Copyright terms: Public domain W3C validator