MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem5 Structured version   Unicode version

Theorem pgpfac1lem5 16580
Description: Lemma for pgpfac1 16581 (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac1.au  |-  ( ph  ->  A  e.  U )
pgpfac1.3  |-  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
Assertion
Ref Expression
pgpfac1lem5  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Distinct variable groups:    t, s,  .0.    A, s, t    .(+) , s, t    P, s, t    B, s, t    G, s, t    U, s, t    S, s, t    ph, s, t    K, s, t
Allowed substitution hints:    E( t, s)    O( t, s)

Proof of Theorem pgpfac1lem5
Dummy variables  b  u  v  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.n . . . . . . . . . 10  |-  ( ph  ->  B  e.  Fin )
2 pwfi 7606 . . . . . . . . . 10  |-  ( B  e.  Fin  <->  ~P B  e.  Fin )
31, 2sylib 196 . . . . . . . . 9  |-  ( ph  ->  ~P B  e.  Fin )
43adantr 465 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  ~P B  e.  Fin )
5 pgpfac1.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
65subgss 15682 . . . . . . . . . . 11  |-  ( v  e.  (SubGrp `  G
)  ->  v  C_  B )
763ad2ant2 1010 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  v  e.  (SubGrp `  G )  /\  ( v  C.  U  /\  A  e.  v
) )  ->  v  C_  B )
8 selpw 3867 . . . . . . . . . 10  |-  ( v  e.  ~P B  <->  v  C_  B )
97, 8sylibr 212 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  v  e.  (SubGrp `  G )  /\  ( v  C.  U  /\  A  e.  v
) )  ->  v  e.  ~P B )
109rabssdv 3432 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  C_  ~P B )
11 ssfi 7533 . . . . . . . 8  |-  ( ( ~P B  e.  Fin  /\ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  C_  ~P B )  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin )
124, 10, 11syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  S  C.  U
)  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin )
13 finnum 8118 . . . . . . 7  |-  ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  dom  card )
1412, 13syl 16 . . . . . 6  |-  ( (
ph  /\  S  C.  U
)  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  dom  card )
15 pgpfac1.s . . . . . . . . . 10  |-  S  =  ( K `  { A } )
16 pgpfac1.g . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Abel )
17 ablgrp 16282 . . . . . . . . . . . . 13  |-  ( G  e.  Abel  ->  G  e. 
Grp )
1816, 17syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  Grp )
195subgacs 15716 . . . . . . . . . . . 12  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
20 acsmre 14590 . . . . . . . . . . . 12  |-  ( (SubGrp `  G )  e.  (ACS
`  B )  -> 
(SubGrp `  G )  e.  (Moore `  B )
)
2118, 19, 203syl 20 . . . . . . . . . . 11  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  B )
)
22 pgpfac1.u . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
235subgss 15682 . . . . . . . . . . . . 13  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
2422, 23syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  B )
25 pgpfac1.au . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  U )
2624, 25sseldd 3357 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  B )
27 pgpfac1.k . . . . . . . . . . . 12  |-  K  =  (mrCls `  (SubGrp `  G
) )
2827mrcsncl 14550 . . . . . . . . . . 11  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  A  e.  B
)  ->  ( K `  { A } )  e.  (SubGrp `  G
) )
2921, 26, 28syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( K `  { A } )  e.  (SubGrp `  G ) )
3015, 29syl5eqel 2527 . . . . . . . . 9  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
3130adantr 465 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  S  e.  (SubGrp `  G ) )
32 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  S  C.  U
)
3325snssd 4018 . . . . . . . . . . . . 13  |-  ( ph  ->  { A }  C_  U )
3433, 24sstrd 3366 . . . . . . . . . . . 12  |-  ( ph  ->  { A }  C_  B )
3521, 27, 34mrcssidd 14563 . . . . . . . . . . 11  |-  ( ph  ->  { A }  C_  ( K `  { A } ) )
3635, 15syl6sseqr 3403 . . . . . . . . . 10  |-  ( ph  ->  { A }  C_  S )
37 snssg 4007 . . . . . . . . . . 11  |-  ( A  e.  B  ->  ( A  e.  S  <->  { A }  C_  S ) )
3826, 37syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( A  e.  S  <->  { A }  C_  S
) )
3936, 38mpbird 232 . . . . . . . . 9  |-  ( ph  ->  A  e.  S )
4039adantr 465 . . . . . . . 8  |-  ( (
ph  /\  S  C.  U
)  ->  A  e.  S )
41 psseq1 3443 . . . . . . . . . 10  |-  ( v  =  S  ->  (
v  C.  U  <->  S  C.  U
) )
42 eleq2 2504 . . . . . . . . . 10  |-  ( v  =  S  ->  ( A  e.  v  <->  A  e.  S ) )
4341, 42anbi12d 710 . . . . . . . . 9  |-  ( v  =  S  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( S  C.  U  /\  A  e.  S
) ) )
4443rspcev 3073 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  ( S  C.  U  /\  A  e.  S ) )  ->  E. v  e.  (SubGrp `  G ) ( v 
C.  U  /\  A  e.  v ) )
4531, 32, 40, 44syl12anc 1216 . . . . . . 7  |-  ( (
ph  /\  S  C.  U
)  ->  E. v  e.  (SubGrp `  G )
( v  C.  U  /\  A  e.  v
) )
46 rabn0 3657 . . . . . . 7  |-  ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/)  <->  E. v  e.  (SubGrp `  G ) ( v 
C.  U  /\  A  e.  v ) )
4745, 46sylibr 212 . . . . . 6  |-  ( (
ph  /\  S  C.  U
)  ->  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/) )
48 simpr1 994 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  C_ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )
49 simpr2 995 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  =/=  (/) )
5012adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) }  e.  Fin )
51 ssfi 7533 . . . . . . . . . . 11  |-  ( ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  Fin  /\  u  C_ 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )  ->  u  e.  Fin )
5250, 48, 51syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  u  e.  Fin )
53 simpr3 996 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  -> [ C.]  Or  u )
54 fin1a2lem10 8578 . . . . . . . . . 10  |-  ( ( u  =/=  (/)  /\  u  e.  Fin  /\ [ C.]  Or  u
)  ->  U. u  e.  u )
5549, 52, 53, 54syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  U. u  e.  u )
5648, 55sseldd 3357 . . . . . . . 8  |-  ( ( ( ph  /\  S  C.  U )  /\  (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
) )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )
5756ex 434 . . . . . . 7  |-  ( (
ph  /\  S  C.  U
)  ->  ( (
u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u
)  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )
5857alrimiv 1685 . . . . . 6  |-  ( (
ph  /\  S  C.  U
)  ->  A. u
( ( u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )
59 zornn0g 8674 . . . . . 6  |-  ( ( { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  e.  dom  card  /\  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  =/=  (/)  /\  A. u
( ( u  C_  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  /\  u  =/=  (/)  /\ [ C.]  Or  u )  ->  U. u  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } ) )  ->  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w )
6014, 47, 58, 59syl3anc 1218 . . . . 5  |-  ( (
ph  /\  S  C.  U
)  ->  E. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w
)
61 psseq1 3443 . . . . . . . 8  |-  ( v  =  w  ->  (
v  C.  U  <->  w  C.  U
) )
62 eleq2 2504 . . . . . . . 8  |-  ( v  =  w  ->  ( A  e.  v  <->  A  e.  w ) )
6361, 62anbi12d 710 . . . . . . 7  |-  ( v  =  w  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( w  C.  U  /\  A  e.  w
) ) )
6463ralrab 3121 . . . . . 6  |-  ( A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w  <->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6564rexbii 2740 . . . . 5  |-  ( E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  -.  s  C.  w  <->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6660, 65sylib 196 . . . 4  |-  ( (
ph  /\  S  C.  U
)  ->  E. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )
6766ex 434 . . 3  |-  ( ph  ->  ( S  C.  U  ->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
68 pgpfac1.3 . . . . 5  |-  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
69 psseq1 3443 . . . . . . 7  |-  ( v  =  s  ->  (
v  C.  U  <->  s  C.  U
) )
70 eleq2 2504 . . . . . . 7  |-  ( v  =  s  ->  ( A  e.  v  <->  A  e.  s ) )
7169, 70anbi12d 710 . . . . . 6  |-  ( v  =  s  ->  (
( v  C.  U  /\  A  e.  v
)  <->  ( s  C.  U  /\  A  e.  s ) ) )
7271ralrab 3121 . . . . 5  |-  ( A. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  A. s  e.  (SubGrp `  G )
( ( s  C.  U  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
7368, 72sylibr 212 . . . 4  |-  ( ph  ->  A. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) )
74 r19.29 2857 . . . . 5  |-  ( ( A. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  /\  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. s  e.  {
v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )
7571elrab 3117 . . . . . . 7  |-  ( s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  <->  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )
76 ineq2 3546 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( S  i^i  t )  =  ( S  i^i  v
) )
7776eqeq1d 2451 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
( S  i^i  t
)  =  {  .0.  }  <-> 
( S  i^i  v
)  =  {  .0.  } ) )
78 oveq2 6099 . . . . . . . . . . . 12  |-  ( t  =  v  ->  ( S  .(+)  t )  =  ( S  .(+)  v ) )
7978eqeq1d 2451 . . . . . . . . . . 11  |-  ( t  =  v  ->  (
( S  .(+)  t )  =  s  <->  ( S  .(+) 
v )  =  s ) )
8077, 79anbi12d 710 . . . . . . . . . 10  |-  ( t  =  v  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s ) ) )
8180cbvrexv 2948 . . . . . . . . 9  |-  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  <->  E. v  e.  (SubGrp `  G )
( ( S  i^i  v )  =  {  .0.  }  /\  ( S 
.(+)  v )  =  s ) )
82 simprrl 763 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
s  C.  U )
8382ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  s  C.  U
)
84 simpr2 995 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( S  .(+) 
v )  =  s )
8584psseq1d 3448 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( ( S  .(+)  v )  C.  U 
<->  s  C.  U )
)
8683, 85mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( S  .(+) 
v )  C.  U
)
87 pssdif 3741 . . . . . . . . . . . . . . 15  |-  ( ( S  .(+)  v )  C.  U  ->  ( U  \  ( S  .(+)  v ) )  =/=  (/) )
88 n0 3646 . . . . . . . . . . . . . . 15  |-  ( ( U  \  ( S 
.(+)  v ) )  =/=  (/)  <->  E. b  b  e.  ( U  \  ( S  .(+)  v ) ) )
8987, 88sylib 196 . . . . . . . . . . . . . 14  |-  ( ( S  .(+)  v )  C.  U  ->  E. b 
b  e.  ( U 
\  ( S  .(+)  v ) ) )
9086, 89syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  E. b 
b  e.  ( U 
\  ( S  .(+)  v ) ) )
91 pgpfac1.o . . . . . . . . . . . . . . . 16  |-  O  =  ( od `  G
)
92 pgpfac1.e . . . . . . . . . . . . . . . 16  |-  E  =  (gEx `  G )
93 pgpfac1.z . . . . . . . . . . . . . . . 16  |-  .0.  =  ( 0g `  G )
94 pgpfac1.l . . . . . . . . . . . . . . . 16  |-  .(+)  =  (
LSSum `  G )
95 pgpfac1.p . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  P pGrp  G )
9695ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  P pGrp  G )
9716ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  G  e.  Abel )
981ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  B  e.  Fin )
99 pgpfac1.oe . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( O `  A
)  =  E )
10099ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( O `  A )  =  E )
10122ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  U  e.  (SubGrp `  G )
)
10225ad3antrrr 729 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A  e.  U )
103 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  v  e.  (SubGrp `  G )
)
104 simprl1 1033 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  i^i  v )  =  {  .0.  } )
10586adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  C.  U )
106105pssssd 3453 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  C_  U )
107 simprl3 1035 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) )
10884adantrr 716 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( S  .(+)  v )  =  s )
109 psseq1 3443 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( S  .(+)  v )  =  s  ->  ( ( S  .(+)  v )  C.  y  <->  s  C.  y
) )
110109notbid 294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( S  .(+)  v )  =  s  ->  ( -.  ( S  .(+)  v ) 
C.  y  <->  -.  s  C.  y ) )
111110imbi2d 316 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( S  .(+)  v )  =  s  ->  ( ( ( y  C.  U  /\  A  e.  y
)  ->  -.  ( S  .(+)  v )  C.  y )  <->  ( (
y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y
) ) )
112111ralbidv 2735 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S  .(+)  v )  =  s  ->  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v ) 
C.  y )  <->  A. y  e.  (SubGrp `  G )
( ( y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y ) ) )
113 psseq1 3443 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  (
y  C.  U  <->  w  C.  U
) )
114 eleq2 2504 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  ( A  e.  y  <->  A  e.  w ) )
115113, 114anbi12d 710 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  w  ->  (
( y  C.  U  /\  A  e.  y
)  <->  ( w  C.  U  /\  A  e.  w
) ) )
116 psseq2 3444 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  w  ->  (
s  C.  y  <->  s  C.  w
) )
117116notbid 294 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  w  ->  ( -.  s  C.  y  <->  -.  s  C.  w ) )
118115, 117imbi12d 320 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  w  ->  (
( ( y  C.  U  /\  A  e.  y )  ->  -.  s  C.  y )  <->  ( (
w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
119118cbvralv 2947 . . . . . . . . . . . . . . . . . . 19  |-  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  s  C.  y )  <->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) )
120112, 119syl6bb 261 . . . . . . . . . . . . . . . . . 18  |-  ( ( S  .(+)  v )  =  s  ->  ( A. y  e.  (SubGrp `  G
) ( ( y 
C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v ) 
C.  y )  <->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w ) ) )
121108, 120syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  ( A. y  e.  (SubGrp `  G ) ( ( y  C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v )  C.  y )  <->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) ) )
122107, 121mpbird 232 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  A. y  e.  (SubGrp `  G )
( ( y  C.  U  /\  A  e.  y )  ->  -.  ( S  .(+)  v )  C.  y ) )
123 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  b  e.  ( U  \  ( S  .(+)  v ) ) )
124 eqid 2443 . . . . . . . . . . . . . . . 16  |-  (.g `  G
)  =  (.g `  G
)
12527, 15, 5, 91, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 104, 106, 122, 123, 124pgpfac1lem4 16579 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
) )  /\  b  e.  ( U  \  ( S  .(+)  v ) ) ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
126125expr 615 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( b  e.  ( U  \  ( S  .(+)  v ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
127126exlimdv 1690 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  ( E. b  b  e.  ( U  \  ( S  .(+)  v ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) )
12890, 127mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  /\  ( ( S  i^i  v )  =  {  .0.  }  /\  ( S  .(+)  v )  =  s  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
1291283exp2 1205 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  ->  ( ( S  i^i  v )  =  {  .0.  }  ->  ( ( S  .(+)  v )  =  s  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) ) )
130129impd 431 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  (SubGrp `  G )  /\  (
s  C.  U  /\  A  e.  s )
) )  /\  v  e.  (SubGrp `  G )
)  ->  ( (
( S  i^i  v
)  =  {  .0.  }  /\  ( S  .(+)  v )  =  s )  ->  ( A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  s  C.  w )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
131130rexlimdva 2841 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( E. v  e.  (SubGrp `  G )
( ( S  i^i  v )  =  {  .0.  }  /\  ( S 
.(+)  v )  =  s )  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
13281, 131syl5bi 217 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  ->  ( A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) ) )
133132impd 431 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  (SubGrp `  G )  /\  ( s  C.  U  /\  A  e.  s
) ) )  -> 
( ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13475, 133sylan2b 475 . . . . . 6  |-  ( (
ph  /\  s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } )  ->  (
( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
135134rexlimdva 2841 . . . . 5  |-  ( ph  ->  ( E. s  e. 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) }  ( E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  /\  A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13674, 135syl5 32 . . . 4  |-  ( ph  ->  ( ( A. s  e.  { v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  /\  E. s  e.  { v  e.  (SubGrp `  G
)  |  ( v 
C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  s  C.  w ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
13773, 136mpand 675 . . 3  |-  ( ph  ->  ( E. s  e. 
{ v  e.  (SubGrp `  G )  |  ( v  C.  U  /\  A  e.  v ) } A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  s  C.  w
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) ) )
13867, 137syld 44 . 2  |-  ( ph  ->  ( S  C.  U  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
139930subg 15706 . . . . . 6  |-  ( G  e.  Grp  ->  {  .0.  }  e.  (SubGrp `  G
) )
14018, 139syl 16 . . . . 5  |-  ( ph  ->  {  .0.  }  e.  (SubGrp `  G ) )
141140adantr 465 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  {  .0.  }  e.  (SubGrp `  G
) )
14293subg0cl 15689 . . . . . . . 8  |-  ( S  e.  (SubGrp `  G
)  ->  .0.  e.  S )
14330, 142syl 16 . . . . . . 7  |-  ( ph  ->  .0.  e.  S )
144143snssd 4018 . . . . . 6  |-  ( ph  ->  {  .0.  }  C_  S )
145144adantr 465 . . . . 5  |-  ( (
ph  /\  S  =  U )  ->  {  .0.  } 
C_  S )
146 sseqin2 3569 . . . . 5  |-  ( {  .0.  }  C_  S  <->  ( S  i^i  {  .0.  } )  =  {  .0.  } )
147145, 146sylib 196 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  ( S  i^i  {  .0.  }
)  =  {  .0.  } )
14894lsmss2 16165 . . . . . . 7  |-  ( ( S  e.  (SubGrp `  G )  /\  {  .0.  }  e.  (SubGrp `  G )  /\  {  .0.  }  C_  S )  ->  ( S  .(+)  {  .0.  } )  =  S )
14930, 140, 144, 148syl3anc 1218 . . . . . 6  |-  ( ph  ->  ( S  .(+)  {  .0.  } )  =  S )
150149eqeq1d 2451 . . . . 5  |-  ( ph  ->  ( ( S  .(+)  {  .0.  } )  =  U  <->  S  =  U
) )
151150biimpar 485 . . . 4  |-  ( (
ph  /\  S  =  U )  ->  ( S  .(+)  {  .0.  }
)  =  U )
152 ineq2 3546 . . . . . . 7  |-  ( t  =  {  .0.  }  ->  ( S  i^i  t
)  =  ( S  i^i  {  .0.  }
) )
153152eqeq1d 2451 . . . . . 6  |-  ( t  =  {  .0.  }  ->  ( ( S  i^i  t )  =  {  .0.  }  <->  ( S  i^i  {  .0.  } )  =  {  .0.  } ) )
154 oveq2 6099 . . . . . . 7  |-  ( t  =  {  .0.  }  ->  ( S  .(+)  t )  =  ( S  .(+)  {  .0.  } ) )
155154eqeq1d 2451 . . . . . 6  |-  ( t  =  {  .0.  }  ->  ( ( S  .(+)  t )  =  U  <->  ( S  .(+)  {  .0.  } )  =  U ) )
156153, 155anbi12d 710 . . . . 5  |-  ( t  =  {  .0.  }  ->  ( ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U )  <->  ( ( S  i^i  {  .0.  }
)  =  {  .0.  }  /\  ( S  .(+)  {  .0.  } )  =  U ) ) )
157156rspcev 3073 . . . 4  |-  ( ( {  .0.  }  e.  (SubGrp `  G )  /\  ( ( S  i^i  {  .0.  } )  =  {  .0.  }  /\  ( S  .(+)  {  .0.  } )  =  U ) )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
158141, 147, 151, 157syl12anc 1216 . . 3  |-  ( (
ph  /\  S  =  U )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  U ) )
159158ex 434 . 2  |-  ( ph  ->  ( S  =  U  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) ) )
16027mrcsscl 14558 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  { A }  C_  U  /\  U  e.  (SubGrp `  G ) )  -> 
( K `  { A } )  C_  U
)
16121, 33, 22, 160syl3anc 1218 . . . 4  |-  ( ph  ->  ( K `  { A } )  C_  U
)
16215, 161syl5eqss 3400 . . 3  |-  ( ph  ->  S  C_  U )
163 sspss 3455 . . 3  |-  ( S 
C_  U  <->  ( S  C.  U  \/  S  =  U ) )
164162, 163sylib 196 . 2  |-  ( ph  ->  ( S  C.  U  \/  S  =  U
) )
165138, 159, 164mpjaod 381 1  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2606   A.wral 2715   E.wrex 2716   {crab 2719    \ cdif 3325    i^i cin 3327    C_ wss 3328    C. wpss 3329   (/)c0 3637   ~Pcpw 3860   {csn 3877   U.cuni 4091   class class class wbr 4292    Or wor 4640   dom cdm 4840   ` cfv 5418  (class class class)co 6091   [ C.] crpss 6359   Fincfn 7310   cardccrd 8105   Basecbs 14174   0gc0g 14378  Moorecmre 14520  mrClscmrc 14521  ACScacs 14523   Grpcgrp 15410  .gcmg 15414  SubGrpcsubg 15675   odcod 16028  gExcgex 16029   pGrp cpgp 16030   LSSumclsm 16133   Abelcabel 16278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-disj 4263  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-rpss 6360  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-omul 6925  df-er 7101  df-ec 7103  df-qs 7107  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-sup 7691  df-oi 7724  df-card 8109  df-acn 8112  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-q 10954  df-rp 10992  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-fac 12052  df-bc 12079  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-sum 13164  df-dvds 13536  df-gcd 13691  df-prm 13764  df-pc 13904  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-0g 14380  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-grp 15545  df-minusg 15546  df-sbg 15547  df-mulg 15548  df-subg 15678  df-eqg 15680  df-ga 15808  df-cntz 15835  df-od 16032  df-gex 16033  df-pgp 16034  df-lsm 16135  df-cmn 16279  df-abl 16280
This theorem is referenced by:  pgpfac1  16581
  Copyright terms: Public domain W3C validator