MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem3a Structured version   Unicode version

Theorem pgpfac1lem3a 17254
Description: Lemma for pgpfac1 17258. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac1.au  |-  ( ph  ->  A  e.  U )
pgpfac1.w  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
pgpfac1.i  |-  ( ph  ->  ( S  i^i  W
)  =  {  .0.  } )
pgpfac1.ss  |-  ( ph  ->  ( S  .(+)  W ) 
C_  U )
pgpfac1.2  |-  ( ph  ->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  ( S  .(+)  W )  C.  w )
)
pgpfac1.c  |-  ( ph  ->  C  e.  ( U 
\  ( S  .(+)  W ) ) )
pgpfac1.mg  |-  .x.  =  (.g
`  G )
pgpfac1.m  |-  ( ph  ->  M  e.  ZZ )
pgpfac1.mw  |-  ( ph  ->  ( ( P  .x.  C ) ( +g  `  G ) ( M 
.x.  A ) )  e.  W )
Assertion
Ref Expression
pgpfac1lem3a  |-  ( ph  ->  ( P  ||  E  /\  P  ||  M ) )
Distinct variable groups:    w, A    w, 
.(+)    w, P    w, G    w, U    w, C    w, S    w, W    ph, w    w,  .x.    w, K
Allowed substitution hints:    B( w)    E( w)    M( w)    O( w)    .0. (
w)

Proof of Theorem pgpfac1lem3a
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . . 4  |-  ( ph  ->  C  e.  ( U 
\  ( S  .(+)  W ) ) )
21eldifbd 3484 . . 3  |-  ( ph  ->  -.  C  e.  ( S  .(+)  W )
)
3 pgpfac1.p . . . . . . . 8  |-  ( ph  ->  P pGrp  G )
4 pgpprm 16740 . . . . . . . 8  |-  ( P pGrp 
G  ->  P  e.  Prime )
53, 4syl 16 . . . . . . 7  |-  ( ph  ->  P  e.  Prime )
6 pgpfac1.g . . . . . . . . 9  |-  ( ph  ->  G  e.  Abel )
7 ablgrp 16930 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
86, 7syl 16 . . . . . . . 8  |-  ( ph  ->  G  e.  Grp )
9 pgpfac1.n . . . . . . . 8  |-  ( ph  ->  B  e.  Fin )
10 pgpfac1.b . . . . . . . . 9  |-  B  =  ( Base `  G
)
11 pgpfac1.e . . . . . . . . 9  |-  E  =  (gEx `  G )
1210, 11gexcl2 16736 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  B  e.  Fin )  ->  E  e.  NN )
138, 9, 12syl2anc 661 . . . . . . 7  |-  ( ph  ->  E  e.  NN )
14 pceq0 14406 . . . . . . 7  |-  ( ( P  e.  Prime  /\  E  e.  NN )  ->  (
( P  pCnt  E
)  =  0  <->  -.  P  ||  E ) )
155, 13, 14syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( P  pCnt  E )  =  0  <->  -.  P  ||  E ) )
16 oveq2 6304 . . . . . 6  |-  ( ( P  pCnt  E )  =  0  ->  ( P ^ ( P  pCnt  E ) )  =  ( P ^ 0 ) )
1715, 16syl6bir 229 . . . . 5  |-  ( ph  ->  ( -.  P  ||  E  ->  ( P ^
( P  pCnt  E
) )  =  ( P ^ 0 ) ) )
1810grpbn0 16206 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  B  =/=  (/) )
198, 18syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  B  =/=  (/) )
20 hashnncl 12439 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
219, 20syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
2219, 21mpbird 232 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  B
)  e.  NN )
235, 22pccld 14386 . . . . . . . . . 10  |-  ( ph  ->  ( P  pCnt  ( # `
 B ) )  e.  NN0 )
2410, 11gexdvds3 16737 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  B  e.  Fin )  ->  E  ||  ( # `  B ) )
258, 9, 24syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  E  ||  ( # `  B ) )
2610pgphash 16754 . . . . . . . . . . . 12  |-  ( ( P pGrp  G  /\  B  e.  Fin )  ->  ( # `
 B )  =  ( P ^ ( P  pCnt  ( # `  B
) ) ) )
273, 9, 26syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  B
)  =  ( P ^ ( P  pCnt  (
# `  B )
) ) )
2825, 27breqtrd 4480 . . . . . . . . . 10  |-  ( ph  ->  E  ||  ( P ^ ( P  pCnt  (
# `  B )
) ) )
29 oveq2 6304 . . . . . . . . . . . 12  |-  ( k  =  ( P  pCnt  (
# `  B )
)  ->  ( P ^ k )  =  ( P ^ ( P  pCnt  ( # `  B
) ) ) )
3029breq2d 4468 . . . . . . . . . . 11  |-  ( k  =  ( P  pCnt  (
# `  B )
)  ->  ( E  ||  ( P ^ k
)  <->  E  ||  ( P ^ ( P  pCnt  (
# `  B )
) ) ) )
3130rspcev 3210 . . . . . . . . . 10  |-  ( ( ( P  pCnt  ( # `
 B ) )  e.  NN0  /\  E  ||  ( P ^ ( P 
pCnt  ( # `  B
) ) ) )  ->  E. k  e.  NN0  E 
||  ( P ^
k ) )
3223, 28, 31syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  E. k  e.  NN0  E 
||  ( P ^
k ) )
33 pcprmpw2 14417 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  E  e.  NN )  ->  ( E. k  e.  NN0  E 
||  ( P ^
k )  <->  E  =  ( P ^ ( P 
pCnt  E ) ) ) )
345, 13, 33syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( E. k  e. 
NN0  E  ||  ( P ^ k )  <->  E  =  ( P ^ ( P 
pCnt  E ) ) ) )
3532, 34mpbid 210 . . . . . . . 8  |-  ( ph  ->  E  =  ( P ^ ( P  pCnt  E ) ) )
3635eqcomd 2465 . . . . . . 7  |-  ( ph  ->  ( P ^ ( P  pCnt  E ) )  =  E )
37 prmnn 14232 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
385, 37syl 16 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
3938nncnd 10572 . . . . . . . 8  |-  ( ph  ->  P  e.  CC )
4039exp0d 12307 . . . . . . 7  |-  ( ph  ->  ( P ^ 0 )  =  1 )
4136, 40eqeq12d 2479 . . . . . 6  |-  ( ph  ->  ( ( P ^
( P  pCnt  E
) )  =  ( P ^ 0 )  <-> 
E  =  1 ) )
42 grpmnd 16189 . . . . . . . 8  |-  ( G  e.  Grp  ->  G  e.  Mnd )
438, 42syl 16 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
4410, 11gex1 16738 . . . . . . 7  |-  ( G  e.  Mnd  ->  ( E  =  1  <->  B  ~~  1o ) )
4543, 44syl 16 . . . . . 6  |-  ( ph  ->  ( E  =  1  <-> 
B  ~~  1o )
)
4641, 45bitrd 253 . . . . 5  |-  ( ph  ->  ( ( P ^
( P  pCnt  E
) )  =  ( P ^ 0 )  <-> 
B  ~~  1o )
)
4717, 46sylibd 214 . . . 4  |-  ( ph  ->  ( -.  P  ||  E  ->  B  ~~  1o ) )
48 pgpfac1.s . . . . . . . . . . 11  |-  S  =  ( K `  { A } )
4910subgacs 16363 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
508, 49syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  (SubGrp `  G )  e.  (ACS `  B )
)
5150acsmred 15073 . . . . . . . . . . . 12  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  B )
)
52 pgpfac1.u . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
5310subgss 16329 . . . . . . . . . . . . . 14  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
5452, 53syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  U  C_  B )
55 pgpfac1.au . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  U )
5654, 55sseldd 3500 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  B )
57 pgpfac1.k . . . . . . . . . . . . 13  |-  K  =  (mrCls `  (SubGrp `  G
) )
5857mrcsncl 15029 . . . . . . . . . . . 12  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  A  e.  B
)  ->  ( K `  { A } )  e.  (SubGrp `  G
) )
5951, 56, 58syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( K `  { A } )  e.  (SubGrp `  G ) )
6048, 59syl5eqel 2549 . . . . . . . . . 10  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
61 pgpfac1.w . . . . . . . . . 10  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
62 pgpfac1.l . . . . . . . . . . 11  |-  .(+)  =  (
LSSum `  G )
6362lsmsubg2 16992 . . . . . . . . . 10  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )  /\  W  e.  (SubGrp `  G ) )  -> 
( S  .(+)  W )  e.  (SubGrp `  G
) )
646, 60, 61, 63syl3anc 1228 . . . . . . . . 9  |-  ( ph  ->  ( S  .(+)  W )  e.  (SubGrp `  G
) )
65 pgpfac1.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
6665subg0cl 16336 . . . . . . . . 9  |-  ( ( S  .(+)  W )  e.  (SubGrp `  G )  ->  .0.  e.  ( S 
.(+)  W ) )
6764, 66syl 16 . . . . . . . 8  |-  ( ph  ->  .0.  e.  ( S 
.(+)  W ) )
6867snssd 4177 . . . . . . 7  |-  ( ph  ->  {  .0.  }  C_  ( S  .(+)  W ) )
6968adantr 465 . . . . . 6  |-  ( (
ph  /\  B  ~~  1o )  ->  {  .0.  } 
C_  ( S  .(+)  W ) )
701eldifad 3483 . . . . . . . . 9  |-  ( ph  ->  C  e.  U )
7154, 70sseldd 3500 . . . . . . . 8  |-  ( ph  ->  C  e.  B )
7271adantr 465 . . . . . . 7  |-  ( (
ph  /\  B  ~~  1o )  ->  C  e.  B )
7310, 65grpidcl 16205 . . . . . . . . 9  |-  ( G  e.  Grp  ->  .0.  e.  B )
748, 73syl 16 . . . . . . . 8  |-  ( ph  ->  .0.  e.  B )
75 en1eqsn 7768 . . . . . . . 8  |-  ( (  .0.  e.  B  /\  B  ~~  1o )  ->  B  =  {  .0.  } )
7674, 75sylan 471 . . . . . . 7  |-  ( (
ph  /\  B  ~~  1o )  ->  B  =  {  .0.  } )
7772, 76eleqtrd 2547 . . . . . 6  |-  ( (
ph  /\  B  ~~  1o )  ->  C  e. 
{  .0.  } )
7869, 77sseldd 3500 . . . . 5  |-  ( (
ph  /\  B  ~~  1o )  ->  C  e.  ( S  .(+)  W ) )
7978ex 434 . . . 4  |-  ( ph  ->  ( B  ~~  1o  ->  C  e.  ( S 
.(+)  W ) ) )
8047, 79syld 44 . . 3  |-  ( ph  ->  ( -.  P  ||  E  ->  C  e.  ( S  .(+)  W )
) )
812, 80mt3d 125 . 2  |-  ( ph  ->  P  ||  E )
82 pgpfac1.oe . . . . 5  |-  ( ph  ->  ( O `  A
)  =  E )
8313nncnd 10572 . . . . . 6  |-  ( ph  ->  E  e.  CC )
8438nnne0d 10601 . . . . . 6  |-  ( ph  ->  P  =/=  0 )
8583, 39, 84divcan1d 10342 . . . . 5  |-  ( ph  ->  ( ( E  /  P )  x.  P
)  =  E )
8682, 85eqtr4d 2501 . . . 4  |-  ( ph  ->  ( O `  A
)  =  ( ( E  /  P )  x.  P ) )
87 nndivdvds 14004 . . . . . . . . . . . . 13  |-  ( ( E  e.  NN  /\  P  e.  NN )  ->  ( P  ||  E  <->  ( E  /  P )  e.  NN ) )
8813, 38, 87syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  ||  E  <->  ( E  /  P )  e.  NN ) )
8981, 88mpbid 210 . . . . . . . . . . 11  |-  ( ph  ->  ( E  /  P
)  e.  NN )
9089nnzd 10989 . . . . . . . . . 10  |-  ( ph  ->  ( E  /  P
)  e.  ZZ )
91 pgpfac1.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
9290, 91zmulcld 10996 . . . . . . . . 9  |-  ( ph  ->  ( ( E  /  P )  x.  M
)  e.  ZZ )
9356snssd 4177 . . . . . . . . . . . 12  |-  ( ph  ->  { A }  C_  B )
9451, 57, 93mrcssidd 15042 . . . . . . . . . . 11  |-  ( ph  ->  { A }  C_  ( K `  { A } ) )
9594, 48syl6sseqr 3546 . . . . . . . . . 10  |-  ( ph  ->  { A }  C_  S )
96 snssg 4165 . . . . . . . . . . 11  |-  ( A  e.  U  ->  ( A  e.  S  <->  { A }  C_  S ) )
9755, 96syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( A  e.  S  <->  { A }  C_  S
) )
9895, 97mpbird 232 . . . . . . . . 9  |-  ( ph  ->  A  e.  S )
99 pgpfac1.mg . . . . . . . . . 10  |-  .x.  =  (.g
`  G )
10099subgmulgcl 16341 . . . . . . . . 9  |-  ( ( S  e.  (SubGrp `  G )  /\  (
( E  /  P
)  x.  M )  e.  ZZ  /\  A  e.  S )  ->  (
( ( E  /  P )  x.  M
)  .x.  A )  e.  S )
10160, 92, 98, 100syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( ( ( E  /  P )  x.  M )  .x.  A
)  e.  S )
102 prmz 14233 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1035, 102syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  ZZ )
10410, 99mulgcl 16286 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  P  e.  ZZ  /\  C  e.  B )  ->  ( P  .x.  C )  e.  B )
1058, 103, 71, 104syl3anc 1228 . . . . . . . . . . 11  |-  ( ph  ->  ( P  .x.  C
)  e.  B )
10610, 99mulgcl 16286 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  M  e.  ZZ  /\  A  e.  B )  ->  ( M  .x.  A )  e.  B )
1078, 91, 56, 106syl3anc 1228 . . . . . . . . . . 11  |-  ( ph  ->  ( M  .x.  A
)  e.  B )
108 eqid 2457 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
10910, 99, 108mulgdi 16962 . . . . . . . . . . 11  |-  ( ( G  e.  Abel  /\  (
( E  /  P
)  e.  ZZ  /\  ( P  .x.  C )  e.  B  /\  ( M  .x.  A )  e.  B ) )  -> 
( ( E  /  P )  .x.  (
( P  .x.  C
) ( +g  `  G
) ( M  .x.  A ) ) )  =  ( ( ( E  /  P ) 
.x.  ( P  .x.  C ) ) ( +g  `  G ) ( ( E  /  P )  .x.  ( M  .x.  A ) ) ) )
1106, 90, 105, 107, 109syl13anc 1230 . . . . . . . . . 10  |-  ( ph  ->  ( ( E  /  P )  .x.  (
( P  .x.  C
) ( +g  `  G
) ( M  .x.  A ) ) )  =  ( ( ( E  /  P ) 
.x.  ( P  .x.  C ) ) ( +g  `  G ) ( ( E  /  P )  .x.  ( M  .x.  A ) ) ) )
11185oveq1d 6311 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( E  /  P )  x.  P )  .x.  C
)  =  ( E 
.x.  C ) )
11210, 99mulgass 16299 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  ( ( E  /  P )  e.  ZZ  /\  P  e.  ZZ  /\  C  e.  B )
)  ->  ( (
( E  /  P
)  x.  P ) 
.x.  C )  =  ( ( E  /  P )  .x.  ( P  .x.  C ) ) )
1138, 90, 103, 71, 112syl13anc 1230 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( E  /  P )  x.  P )  .x.  C
)  =  ( ( E  /  P ) 
.x.  ( P  .x.  C ) ) )
11410, 11, 99, 65gexid 16728 . . . . . . . . . . . . 13  |-  ( C  e.  B  ->  ( E  .x.  C )  =  .0.  )
11571, 114syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( E  .x.  C
)  =  .0.  )
116111, 113, 1153eqtr3rd 2507 . . . . . . . . . . 11  |-  ( ph  ->  .0.  =  ( ( E  /  P ) 
.x.  ( P  .x.  C ) ) )
11710, 99mulgass 16299 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( ( E  /  P )  e.  ZZ  /\  M  e.  ZZ  /\  A  e.  B )
)  ->  ( (
( E  /  P
)  x.  M ) 
.x.  A )  =  ( ( E  /  P )  .x.  ( M  .x.  A ) ) )
1188, 90, 91, 56, 117syl13anc 1230 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E  /  P )  x.  M )  .x.  A
)  =  ( ( E  /  P ) 
.x.  ( M  .x.  A ) ) )
119116, 118oveq12d 6314 . . . . . . . . . 10  |-  ( ph  ->  (  .0.  ( +g  `  G ) ( ( ( E  /  P
)  x.  M ) 
.x.  A ) )  =  ( ( ( E  /  P ) 
.x.  ( P  .x.  C ) ) ( +g  `  G ) ( ( E  /  P )  .x.  ( M  .x.  A ) ) ) )
12010subgss 16329 . . . . . . . . . . . . 13  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  B
)
12160, 120syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  B )
122121, 101sseldd 3500 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E  /  P )  x.  M )  .x.  A
)  e.  B )
12310, 108, 65grplid 16207 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( ( ( E  /  P )  x.  M )  .x.  A
)  e.  B )  ->  (  .0.  ( +g  `  G ) ( ( ( E  /  P )  x.  M
)  .x.  A )
)  =  ( ( ( E  /  P
)  x.  M ) 
.x.  A ) )
1248, 122, 123syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  (  .0.  ( +g  `  G ) ( ( ( E  /  P
)  x.  M ) 
.x.  A ) )  =  ( ( ( E  /  P )  x.  M )  .x.  A ) )
125110, 119, 1243eqtr2d 2504 . . . . . . . . 9  |-  ( ph  ->  ( ( E  /  P )  .x.  (
( P  .x.  C
) ( +g  `  G
) ( M  .x.  A ) ) )  =  ( ( ( E  /  P )  x.  M )  .x.  A ) )
126 pgpfac1.mw . . . . . . . . . 10  |-  ( ph  ->  ( ( P  .x.  C ) ( +g  `  G ) ( M 
.x.  A ) )  e.  W )
12799subgmulgcl 16341 . . . . . . . . . 10  |-  ( ( W  e.  (SubGrp `  G )  /\  ( E  /  P )  e.  ZZ  /\  ( ( P  .x.  C ) ( +g  `  G
) ( M  .x.  A ) )  e.  W )  ->  (
( E  /  P
)  .x.  ( ( P  .x.  C ) ( +g  `  G ) ( M  .x.  A
) ) )  e.  W )
12861, 90, 126, 127syl3anc 1228 . . . . . . . . 9  |-  ( ph  ->  ( ( E  /  P )  .x.  (
( P  .x.  C
) ( +g  `  G
) ( M  .x.  A ) ) )  e.  W )
129125, 128eqeltrrd 2546 . . . . . . . 8  |-  ( ph  ->  ( ( ( E  /  P )  x.  M )  .x.  A
)  e.  W )
130101, 129elind 3684 . . . . . . 7  |-  ( ph  ->  ( ( ( E  /  P )  x.  M )  .x.  A
)  e.  ( S  i^i  W ) )
131 pgpfac1.i . . . . . . 7  |-  ( ph  ->  ( S  i^i  W
)  =  {  .0.  } )
132130, 131eleqtrd 2547 . . . . . 6  |-  ( ph  ->  ( ( ( E  /  P )  x.  M )  .x.  A
)  e.  {  .0.  } )
133 elsni 4057 . . . . . 6  |-  ( ( ( ( E  /  P )  x.  M
)  .x.  A )  e.  {  .0.  }  ->  ( ( ( E  /  P )  x.  M
)  .x.  A )  =  .0.  )
134132, 133syl 16 . . . . 5  |-  ( ph  ->  ( ( ( E  /  P )  x.  M )  .x.  A
)  =  .0.  )
135 pgpfac1.o . . . . . . 7  |-  O  =  ( od `  G
)
13610, 135, 99, 65oddvds 16698 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  B  /\  ( ( E  /  P )  x.  M
)  e.  ZZ )  ->  ( ( O `
 A )  ||  ( ( E  /  P )  x.  M
)  <->  ( ( ( E  /  P )  x.  M )  .x.  A )  =  .0.  ) )
1378, 56, 92, 136syl3anc 1228 . . . . 5  |-  ( ph  ->  ( ( O `  A )  ||  (
( E  /  P
)  x.  M )  <-> 
( ( ( E  /  P )  x.  M )  .x.  A
)  =  .0.  )
)
138134, 137mpbird 232 . . . 4  |-  ( ph  ->  ( O `  A
)  ||  ( ( E  /  P )  x.  M ) )
13986, 138eqbrtrrd 4478 . . 3  |-  ( ph  ->  ( ( E  /  P )  x.  P
)  ||  ( ( E  /  P )  x.  M ) )
14089nnne0d 10601 . . . 4  |-  ( ph  ->  ( E  /  P
)  =/=  0 )
141 dvdscmulr 14024 . . . 4  |-  ( ( P  e.  ZZ  /\  M  e.  ZZ  /\  (
( E  /  P
)  e.  ZZ  /\  ( E  /  P
)  =/=  0 ) )  ->  ( (
( E  /  P
)  x.  P ) 
||  ( ( E  /  P )  x.  M )  <->  P  ||  M
) )
142103, 91, 90, 140, 141syl112anc 1232 . . 3  |-  ( ph  ->  ( ( ( E  /  P )  x.  P )  ||  (
( E  /  P
)  x.  M )  <-> 
P  ||  M )
)
143139, 142mpbid 210 . 2  |-  ( ph  ->  P  ||  M )
14481, 143jca 532 1  |-  ( ph  ->  ( P  ||  E  /\  P  ||  M ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808    \ cdif 3468    i^i cin 3470    C_ wss 3471    C. wpss 3472   (/)c0 3793   {csn 4032   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   1oc1o 7141    ~~ cen 7532   Fincfn 7535   0cc0 9509   1c1 9510    x. cmul 9514    / cdiv 10227   NNcn 10556   NN0cn0 10816   ZZcz 10885   ^cexp 12169   #chash 12408    || cdvds 13998   Primecprime 14229    pCnt cpc 14372   Basecbs 14644   +g cplusg 14712   0gc0g 14857  Moorecmre 14999  mrClscmrc 15000  ACScacs 15002   Mndcmnd 16046   Grpcgrp 16180  .gcmg 16183  SubGrpcsubg 16322   odcod 16676  gExcgex 16677   pGrp cpgp 16678   LSSumclsm 16781   Abelcabl 16926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-disj 4428  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-fac 12357  df-bc 12384  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-sum 13521  df-dvds 13999  df-gcd 14157  df-prm 14230  df-pc 14373  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-0g 14859  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-grp 16184  df-minusg 16185  df-sbg 16186  df-mulg 16187  df-subg 16325  df-eqg 16327  df-ga 16455  df-cntz 16482  df-od 16680  df-gex 16681  df-pgp 16682  df-lsm 16783  df-cmn 16927  df-abl 16928
This theorem is referenced by:  pgpfac1lem3  17255
  Copyright terms: Public domain W3C validator