MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem2 Structured version   Unicode version

Theorem pgpfac1lem2 16566
Description: Lemma for pgpfac1 16571. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac1.au  |-  ( ph  ->  A  e.  U )
pgpfac1.w  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
pgpfac1.i  |-  ( ph  ->  ( S  i^i  W
)  =  {  .0.  } )
pgpfac1.ss  |-  ( ph  ->  ( S  .(+)  W ) 
C_  U )
pgpfac1.2  |-  ( ph  ->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  ( S  .(+)  W )  C.  w )
)
pgpfac1.c  |-  ( ph  ->  C  e.  ( U 
\  ( S  .(+)  W ) ) )
pgpfac1.mg  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
pgpfac1lem2  |-  ( ph  ->  ( P  .x.  C
)  e.  ( S 
.(+)  W ) )
Distinct variable groups:    w, A    w, 
.(+)    w, P    w, G    w, U    w, C    w, S    w, W    ph, w    w,  .x.    w, K
Allowed substitution hints:    B( w)    E( w)    O( w)    .0. ( w)

Proof of Theorem pgpfac1lem2
Dummy variables  k 
s  t  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . 3  |-  ( ph  ->  C  e.  ( U 
\  ( S  .(+)  W ) ) )
21eldifbd 3338 . 2  |-  ( ph  ->  -.  C  e.  ( S  .(+)  W )
)
31eldifad 3337 . . . . . . 7  |-  ( ph  ->  C  e.  U )
43adantr 462 . . . . . 6  |-  ( (
ph  /\  -.  ( P  .x.  C )  e.  ( S  .(+)  W ) )  ->  C  e.  U )
5 pgpfac1.u . . . . . . . . . 10  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
6 pgpfac1.p . . . . . . . . . . . 12  |-  ( ph  ->  P pGrp  G )
7 pgpprm 16085 . . . . . . . . . . . 12  |-  ( P pGrp 
G  ->  P  e.  Prime )
86, 7syl 16 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  Prime )
9 prmz 13763 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ZZ )
108, 9syl 16 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ZZ )
11 pgpfac1.mg . . . . . . . . . . 11  |-  .x.  =  (.g
`  G )
1211subgmulgcl 15687 . . . . . . . . . 10  |-  ( ( U  e.  (SubGrp `  G )  /\  P  e.  ZZ  /\  C  e.  U )  ->  ( P  .x.  C )  e.  U )
135, 10, 3, 12syl3anc 1213 . . . . . . . . 9  |-  ( ph  ->  ( P  .x.  C
)  e.  U )
1413adantr 462 . . . . . . . 8  |-  ( (
ph  /\  -.  ( P  .x.  C )  e.  ( S  .(+)  W ) )  ->  ( P  .x.  C )  e.  U
)
15 simpr 458 . . . . . . . 8  |-  ( (
ph  /\  -.  ( P  .x.  C )  e.  ( S  .(+)  W ) )  ->  -.  ( P  .x.  C )  e.  ( S  .(+)  W ) )
1614, 15eldifd 3336 . . . . . . 7  |-  ( (
ph  /\  -.  ( P  .x.  C )  e.  ( S  .(+)  W ) )  ->  ( P  .x.  C )  e.  ( U  \  ( S 
.(+)  W ) ) )
17 pgpfac1.k . . . . . . . 8  |-  K  =  (mrCls `  (SubGrp `  G
) )
18 pgpfac1.s . . . . . . . 8  |-  S  =  ( K `  { A } )
19 pgpfac1.b . . . . . . . 8  |-  B  =  ( Base `  G
)
20 pgpfac1.o . . . . . . . 8  |-  O  =  ( od `  G
)
21 pgpfac1.e . . . . . . . 8  |-  E  =  (gEx `  G )
22 pgpfac1.z . . . . . . . 8  |-  .0.  =  ( 0g `  G )
23 pgpfac1.l . . . . . . . 8  |-  .(+)  =  (
LSSum `  G )
24 pgpfac1.g . . . . . . . 8  |-  ( ph  ->  G  e.  Abel )
25 pgpfac1.n . . . . . . . 8  |-  ( ph  ->  B  e.  Fin )
26 pgpfac1.oe . . . . . . . 8  |-  ( ph  ->  ( O `  A
)  =  E )
27 pgpfac1.au . . . . . . . 8  |-  ( ph  ->  A  e.  U )
28 pgpfac1.w . . . . . . . 8  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
29 pgpfac1.i . . . . . . . 8  |-  ( ph  ->  ( S  i^i  W
)  =  {  .0.  } )
30 pgpfac1.ss . . . . . . . 8  |-  ( ph  ->  ( S  .(+)  W ) 
C_  U )
31 pgpfac1.2 . . . . . . . 8  |-  ( ph  ->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  ( S  .(+)  W )  C.  w )
)
3217, 18, 19, 20, 21, 22, 23, 6, 24, 25, 26, 5, 27, 28, 29, 30, 31pgpfac1lem1 16565 . . . . . . 7  |-  ( (
ph  /\  ( P  .x.  C )  e.  ( U  \  ( S 
.(+)  W ) ) )  ->  ( ( S 
.(+)  W )  .(+)  ( K `
 { ( P 
.x.  C ) } ) )  =  U )
3316, 32syldan 467 . . . . . 6  |-  ( (
ph  /\  -.  ( P  .x.  C )  e.  ( S  .(+)  W ) )  ->  ( ( S  .(+)  W )  .(+)  ( K `  { ( P  .x.  C ) } ) )  =  U )
344, 33eleqtrrd 2518 . . . . 5  |-  ( (
ph  /\  -.  ( P  .x.  C )  e.  ( S  .(+)  W ) )  ->  C  e.  ( ( S  .(+)  W )  .(+)  ( K `  { ( P  .x.  C ) } ) ) )
3534ex 434 . . . 4  |-  ( ph  ->  ( -.  ( P 
.x.  C )  e.  ( S  .(+)  W )  ->  C  e.  ( ( S  .(+)  W ) 
.(+)  ( K `  { ( P  .x.  C ) } ) ) ) )
36 eqid 2441 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
37 ablgrp 16275 . . . . . . . . . . . 12  |-  ( G  e.  Abel  ->  G  e. 
Grp )
3824, 37syl 16 . . . . . . . . . . 11  |-  ( ph  ->  G  e.  Grp )
3919subgacs 15709 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
4038, 39syl 16 . . . . . . . . . 10  |-  ( ph  ->  (SubGrp `  G )  e.  (ACS `  B )
)
4140acsmred 14590 . . . . . . . . 9  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  B )
)
4219subgss 15675 . . . . . . . . . . 11  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
435, 42syl 16 . . . . . . . . . 10  |-  ( ph  ->  U  C_  B )
4443, 27sseldd 3354 . . . . . . . . 9  |-  ( ph  ->  A  e.  B )
4517mrcsncl 14546 . . . . . . . . 9  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  A  e.  B
)  ->  ( K `  { A } )  e.  (SubGrp `  G
) )
4641, 44, 45syl2anc 656 . . . . . . . 8  |-  ( ph  ->  ( K `  { A } )  e.  (SubGrp `  G ) )
4718, 46syl5eqel 2525 . . . . . . 7  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
4823lsmsubg2 16334 . . . . . . 7  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )  /\  W  e.  (SubGrp `  G ) )  -> 
( S  .(+)  W )  e.  (SubGrp `  G
) )
4924, 47, 28, 48syl3anc 1213 . . . . . 6  |-  ( ph  ->  ( S  .(+)  W )  e.  (SubGrp `  G
) )
5043, 13sseldd 3354 . . . . . . 7  |-  ( ph  ->  ( P  .x.  C
)  e.  B )
5117mrcsncl 14546 . . . . . . 7  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  ( P  .x.  C
)  e.  B )  ->  ( K `  { ( P  .x.  C ) } )  e.  (SubGrp `  G
) )
5241, 50, 51syl2anc 656 . . . . . 6  |-  ( ph  ->  ( K `  {
( P  .x.  C
) } )  e.  (SubGrp `  G )
)
5336, 23, 49, 52lsmelvalm 16143 . . . . 5  |-  ( ph  ->  ( C  e.  ( ( S  .(+)  W ) 
.(+)  ( K `  { ( P  .x.  C ) } ) )  <->  E. s  e.  ( S  .(+)  W ) E. t  e.  ( K `  { ( P  .x.  C ) } ) C  =  ( s ( -g `  G
) t ) ) )
54 eqid 2441 . . . . . . . . . 10  |-  ( k  e.  ZZ  |->  ( k 
.x.  ( P  .x.  C ) ) )  =  ( k  e.  ZZ  |->  ( k  .x.  ( P  .x.  C ) ) )
5519, 11, 54, 17cycsubg2 15711 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( P  .x.  C )  e.  B )  -> 
( K `  {
( P  .x.  C
) } )  =  ran  ( k  e.  ZZ  |->  ( k  .x.  ( P  .x.  C ) ) ) )
5638, 50, 55syl2anc 656 . . . . . . . 8  |-  ( ph  ->  ( K `  {
( P  .x.  C
) } )  =  ran  ( k  e.  ZZ  |->  ( k  .x.  ( P  .x.  C ) ) ) )
5756rexeqdv 2922 . . . . . . 7  |-  ( ph  ->  ( E. t  e.  ( K `  {
( P  .x.  C
) } ) C  =  ( s (
-g `  G )
t )  <->  E. t  e.  ran  ( k  e.  ZZ  |->  ( k  .x.  ( P  .x.  C ) ) ) C  =  ( s ( -g `  G ) t ) ) )
58 ovex 6115 . . . . . . . . 9  |-  ( k 
.x.  ( P  .x.  C ) )  e. 
_V
5958rgenw 2781 . . . . . . . 8  |-  A. k  e.  ZZ  ( k  .x.  ( P  .x.  C ) )  e.  _V
60 oveq2 6098 . . . . . . . . . 10  |-  ( t  =  ( k  .x.  ( P  .x.  C ) )  ->  ( s
( -g `  G ) t )  =  ( s ( -g `  G
) ( k  .x.  ( P  .x.  C ) ) ) )
6160eqeq2d 2452 . . . . . . . . 9  |-  ( t  =  ( k  .x.  ( P  .x.  C ) )  ->  ( C  =  ( s (
-g `  G )
t )  <->  C  =  ( s ( -g `  G ) ( k 
.x.  ( P  .x.  C ) ) ) ) )
6254, 61rexrnmpt 5850 . . . . . . . 8  |-  ( A. k  e.  ZZ  (
k  .x.  ( P  .x.  C ) )  e. 
_V  ->  ( E. t  e.  ran  ( k  e.  ZZ  |->  ( k  .x.  ( P  .x.  C ) ) ) C  =  ( s ( -g `  G ) t )  <->  E. k  e.  ZZ  C  =  ( s
( -g `  G ) ( k  .x.  ( P  .x.  C ) ) ) ) )
6359, 62mp1i 12 . . . . . . 7  |-  ( ph  ->  ( E. t  e. 
ran  ( k  e.  ZZ  |->  ( k  .x.  ( P  .x.  C ) ) ) C  =  ( s ( -g `  G ) t )  <->  E. k  e.  ZZ  C  =  ( s
( -g `  G ) ( k  .x.  ( P  .x.  C ) ) ) ) )
6457, 63bitrd 253 . . . . . 6  |-  ( ph  ->  ( E. t  e.  ( K `  {
( P  .x.  C
) } ) C  =  ( s (
-g `  G )
t )  <->  E. k  e.  ZZ  C  =  ( s ( -g `  G
) ( k  .x.  ( P  .x.  C ) ) ) ) )
6564rexbidv 2734 . . . . 5  |-  ( ph  ->  ( E. s  e.  ( S  .(+)  W ) E. t  e.  ( K `  { ( P  .x.  C ) } ) C  =  ( s ( -g `  G ) t )  <->  E. s  e.  ( S  .(+)  W ) E. k  e.  ZZ  C  =  ( s (
-g `  G )
( k  .x.  ( P  .x.  C ) ) ) ) )
66 rexcom 2880 . . . . . 6  |-  ( E. s  e.  ( S 
.(+)  W ) E. k  e.  ZZ  C  =  ( s ( -g `  G
) ( k  .x.  ( P  .x.  C ) ) )  <->  E. k  e.  ZZ  E. s  e.  ( S  .(+)  W ) C  =  ( s ( -g `  G
) ( k  .x.  ( P  .x.  C ) ) ) )
6738ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  G  e.  Grp )
6830, 43sstrd 3363 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( S  .(+)  W ) 
C_  B )
6968adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( S 
.(+)  W )  C_  B
)
7069sselda 3353 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  s  e.  B )
71 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  k  e.  ZZ )
7250ad2antrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( P  .x.  C )  e.  B
)
7319, 11mulgcl 15637 . . . . . . . . . . . . 13  |-  ( ( G  e.  Grp  /\  k  e.  ZZ  /\  ( P  .x.  C )  e.  B )  ->  (
k  .x.  ( P  .x.  C ) )  e.  B )
7467, 71, 72, 73syl3anc 1213 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( k  .x.  ( P  .x.  C
) )  e.  B
)
7543, 3sseldd 3354 . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  B )
7675ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  C  e.  B )
77 eqid 2441 . . . . . . . . . . . . 13  |-  ( +g  `  G )  =  ( +g  `  G )
7819, 77, 36grpsubadd 15606 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( s  e.  B  /\  ( k  .x.  ( P  .x.  C ) )  e.  B  /\  C  e.  B ) )  -> 
( ( s (
-g `  G )
( k  .x.  ( P  .x.  C ) ) )  =  C  <->  ( C
( +g  `  G ) ( k  .x.  ( P  .x.  C ) ) )  =  s ) )
7967, 70, 74, 76, 78syl13anc 1215 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( (
s ( -g `  G
) ( k  .x.  ( P  .x.  C ) ) )  =  C  <-> 
( C ( +g  `  G ) ( k 
.x.  ( P  .x.  C ) ) )  =  s ) )
80 1zzd 10673 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  1  e.  ZZ )
8110ad2antrr 720 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  P  e.  ZZ )
8271, 81zmulcld 10749 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( k  x.  P )  e.  ZZ )
8319, 11, 77mulgdir 15645 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( 1  e.  ZZ  /\  ( k  x.  P
)  e.  ZZ  /\  C  e.  B )
)  ->  ( (
1  +  ( k  x.  P ) ) 
.x.  C )  =  ( ( 1  .x. 
C ) ( +g  `  G ) ( ( k  x.  P ) 
.x.  C ) ) )
8467, 80, 82, 76, 83syl13anc 1215 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( (
1  +  ( k  x.  P ) ) 
.x.  C )  =  ( ( 1  .x. 
C ) ( +g  `  G ) ( ( k  x.  P ) 
.x.  C ) ) )
8519, 11mulg1 15627 . . . . . . . . . . . . . . 15  |-  ( C  e.  B  ->  (
1  .x.  C )  =  C )
8676, 85syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( 1 
.x.  C )  =  C )
8719, 11mulgass 15650 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  ( k  e.  ZZ  /\  P  e.  ZZ  /\  C  e.  B )
)  ->  ( (
k  x.  P ) 
.x.  C )  =  ( k  .x.  ( P  .x.  C ) ) )
8867, 71, 81, 76, 87syl13anc 1215 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( (
k  x.  P ) 
.x.  C )  =  ( k  .x.  ( P  .x.  C ) ) )
8986, 88oveq12d 6108 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( (
1  .x.  C )
( +g  `  G ) ( ( k  x.  P )  .x.  C
) )  =  ( C ( +g  `  G
) ( k  .x.  ( P  .x.  C ) ) ) )
9084, 89eqtrd 2473 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( (
1  +  ( k  x.  P ) ) 
.x.  C )  =  ( C ( +g  `  G ) ( k 
.x.  ( P  .x.  C ) ) ) )
9190eqeq1d 2449 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( (
( 1  +  ( k  x.  P ) )  .x.  C )  =  s  <->  ( C
( +g  `  G ) ( k  .x.  ( P  .x.  C ) ) )  =  s ) )
9279, 91bitr4d 256 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( (
s ( -g `  G
) ( k  .x.  ( P  .x.  C ) ) )  =  C  <-> 
( ( 1  +  ( k  x.  P
) )  .x.  C
)  =  s ) )
93 eqcom 2443 . . . . . . . . . 10  |-  ( C  =  ( s (
-g `  G )
( k  .x.  ( P  .x.  C ) ) )  <->  ( s (
-g `  G )
( k  .x.  ( P  .x.  C ) ) )  =  C )
94 eqcom 2443 . . . . . . . . . 10  |-  ( s  =  ( ( 1  +  ( k  x.  P ) )  .x.  C )  <->  ( (
1  +  ( k  x.  P ) ) 
.x.  C )  =  s )
9592, 93, 943bitr4g 288 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  s  e.  ( S  .(+)  W ) )  ->  ( C  =  ( s (
-g `  G )
( k  .x.  ( P  .x.  C ) ) )  <->  s  =  ( ( 1  +  ( k  x.  P ) )  .x.  C ) ) )
9695rexbidva 2730 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( E. s  e.  ( S 
.(+)  W ) C  =  ( s ( -g `  G ) ( k 
.x.  ( P  .x.  C ) ) )  <->  E. s  e.  ( S  .(+)  W ) s  =  ( ( 1  +  ( k  x.  P ) )  .x.  C ) ) )
97 risset 2761 . . . . . . . 8  |-  ( ( ( 1  +  ( k  x.  P ) )  .x.  C )  e.  ( S  .(+)  W )  <->  E. s  e.  ( S  .(+)  W )
s  =  ( ( 1  +  ( k  x.  P ) ) 
.x.  C ) )
9896, 97syl6bbr 263 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( E. s  e.  ( S 
.(+)  W ) C  =  ( s ( -g `  G ) ( k 
.x.  ( P  .x.  C ) ) )  <-> 
( ( 1  +  ( k  x.  P
) )  .x.  C
)  e.  ( S 
.(+)  W ) ) )
9998rexbidva 2730 . . . . . 6  |-  ( ph  ->  ( E. k  e.  ZZ  E. s  e.  ( S  .(+)  W ) C  =  ( s ( -g `  G
) ( k  .x.  ( P  .x.  C ) ) )  <->  E. k  e.  ZZ  ( ( 1  +  ( k  x.  P ) )  .x.  C )  e.  ( S  .(+)  W )
) )
10066, 99syl5bb 257 . . . . 5  |-  ( ph  ->  ( E. s  e.  ( S  .(+)  W ) E. k  e.  ZZ  C  =  ( s
( -g `  G ) ( k  .x.  ( P  .x.  C ) ) )  <->  E. k  e.  ZZ  ( ( 1  +  ( k  x.  P
) )  .x.  C
)  e.  ( S 
.(+)  W ) ) )
10153, 65, 1003bitrd 279 . . . 4  |-  ( ph  ->  ( C  e.  ( ( S  .(+)  W ) 
.(+)  ( K `  { ( P  .x.  C ) } ) )  <->  E. k  e.  ZZ  ( ( 1  +  ( k  x.  P
) )  .x.  C
)  e.  ( S 
.(+)  W ) ) )
10235, 101sylibd 214 . . 3  |-  ( ph  ->  ( -.  ( P 
.x.  C )  e.  ( S  .(+)  W )  ->  E. k  e.  ZZ  ( ( 1  +  ( k  x.  P
) )  .x.  C
)  e.  ( S 
.(+)  W ) ) )
10338adantr 462 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  G  e. 
Grp )
10475adantr 462 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  C  e.  B )
105 1z 10672 . . . . . . 7  |-  1  e.  ZZ
106 id 22 . . . . . . . 8  |-  ( k  e.  ZZ  ->  k  e.  ZZ )
107 zmulcl 10689 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  P  e.  ZZ )  ->  ( k  x.  P
)  e.  ZZ )
108106, 10, 107syl2anr 475 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( k  x.  P )  e.  ZZ )
109 zaddcl 10681 . . . . . . 7  |-  ( ( 1  e.  ZZ  /\  ( k  x.  P
)  e.  ZZ )  ->  ( 1  +  ( k  x.  P
) )  e.  ZZ )
110105, 108, 109sylancr 658 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( 1  +  ( k  x.  P ) )  e.  ZZ )
11119, 20odcl 16032 . . . . . . . . 9  |-  ( C  e.  B  ->  ( O `  C )  e.  NN0 )
112104, 111syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( O `
 C )  e. 
NN0 )
113112nn0zd 10741 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( O `
 C )  e.  ZZ )
114 hashcl 12122 . . . . . . . . . 10  |-  ( B  e.  Fin  ->  ( # `
 B )  e. 
NN0 )
11525, 114syl 16 . . . . . . . . 9  |-  ( ph  ->  ( # `  B
)  e.  NN0 )
116115nn0zd 10741 . . . . . . . 8  |-  ( ph  ->  ( # `  B
)  e.  ZZ )
117116adantr 462 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( # `  B )  e.  ZZ )
118 gcdcom 13700 . . . . . . . . 9  |-  ( ( ( 1  +  ( k  x.  P ) )  e.  ZZ  /\  ( # `  B )  e.  ZZ )  -> 
( ( 1  +  ( k  x.  P
) )  gcd  ( # `
 B ) )  =  ( ( # `  B )  gcd  (
1  +  ( k  x.  P ) ) ) )
119110, 117, 118syl2anc 656 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( 1  +  ( k  x.  P ) )  gcd  ( # `  B
) )  =  ( ( # `  B
)  gcd  ( 1  +  ( k  x.  P ) ) ) )
12019pgphash 16099 . . . . . . . . . . 11  |-  ( ( P pGrp  G  /\  B  e.  Fin )  ->  ( # `
 B )  =  ( P ^ ( P  pCnt  ( # `  B
) ) ) )
1216, 25, 120syl2anc 656 . . . . . . . . . 10  |-  ( ph  ->  ( # `  B
)  =  ( P ^ ( P  pCnt  (
# `  B )
) ) )
122121adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( # `  B )  =  ( P ^ ( P 
pCnt  ( # `  B
) ) ) )
123122oveq1d 6105 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( (
# `  B )  gcd  ( 1  +  ( k  x.  P ) ) )  =  ( ( P ^ ( P  pCnt  ( # `  B
) ) )  gcd  ( 1  +  ( k  x.  P ) ) ) )
124 simpr 458 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ZZ )  ->  k  e.  ZZ )
12510adantr 462 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ZZ )  ->  P  e.  ZZ )
126 1zzd 10673 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ZZ )  ->  1  e.  ZZ )
127 gcdaddm 13709 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  P  e.  ZZ  /\  1  e.  ZZ )  ->  ( P  gcd  1 )  =  ( P  gcd  (
1  +  ( k  x.  P ) ) ) )
128124, 125, 126, 127syl3anc 1213 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( P  gcd  1 )  =  ( P  gcd  (
1  +  ( k  x.  P ) ) ) )
129 gcd1 13712 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  ( P  gcd  1 )  =  1 )
130125, 129syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( P  gcd  1 )  =  1 )
131128, 130eqtr3d 2475 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( P  gcd  ( 1  +  ( k  x.  P
) ) )  =  1 )
13219grpbn0 15560 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  B  =/=  (/) )
13338, 132syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  B  =/=  (/) )
134 hashnncl 12130 . . . . . . . . . . . . . 14  |-  ( B  e.  Fin  ->  (
( # `  B )  e.  NN  <->  B  =/=  (/) ) )
13525, 134syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( # `  B
)  e.  NN  <->  B  =/=  (/) ) )
136133, 135mpbird 232 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  B
)  e.  NN )
1378, 136pccld 13913 . . . . . . . . . . 11  |-  ( ph  ->  ( P  pCnt  ( # `
 B ) )  e.  NN0 )
138137adantr 462 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( P 
pCnt  ( # `  B
) )  e.  NN0 )
139 rpexp1i 13803 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  ( 1  +  ( k  x.  P ) )  e.  ZZ  /\  ( P  pCnt  ( # `  B ) )  e. 
NN0 )  ->  (
( P  gcd  (
1  +  ( k  x.  P ) ) )  =  1  -> 
( ( P ^
( P  pCnt  ( # `
 B ) ) )  gcd  ( 1  +  ( k  x.  P ) ) )  =  1 ) )
140125, 110, 138, 139syl3anc 1213 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( P  gcd  ( 1  +  ( k  x.  P ) ) )  =  1  ->  (
( P ^ ( P  pCnt  ( # `  B
) ) )  gcd  ( 1  +  ( k  x.  P ) ) )  =  1 ) )
141131, 140mpd 15 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( P ^ ( P 
pCnt  ( # `  B
) ) )  gcd  ( 1  +  ( k  x.  P ) ) )  =  1 )
142119, 123, 1413eqtrd 2477 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( 1  +  ( k  x.  P ) )  gcd  ( # `  B
) )  =  1 )
14319, 20oddvds2 16060 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  B  e.  Fin  /\  C  e.  B )  ->  ( O `  C )  ||  ( # `  B
) )
14438, 25, 75, 143syl3anc 1213 . . . . . . . 8  |-  ( ph  ->  ( O `  C
)  ||  ( # `  B
) )
145144adantr 462 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( O `
 C )  ||  ( # `  B ) )
146 rpdvds 13806 . . . . . . 7  |-  ( ( ( ( 1  +  ( k  x.  P
) )  e.  ZZ  /\  ( O `  C
)  e.  ZZ  /\  ( # `  B )  e.  ZZ )  /\  ( ( ( 1  +  ( k  x.  P ) )  gcd  ( # `  B
) )  =  1  /\  ( O `  C )  ||  ( # `
 B ) ) )  ->  ( (
1  +  ( k  x.  P ) )  gcd  ( O `  C ) )  =  1 )
147110, 113, 117, 142, 145, 146syl32anc 1221 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( 1  +  ( k  x.  P ) )  gcd  ( O `  C ) )  =  1 )
14819, 20, 11odbezout 16052 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  C  e.  B  /\  ( 1  +  ( k  x.  P ) )  e.  ZZ )  /\  ( ( 1  +  ( k  x.  P ) )  gcd  ( O `  C
) )  =  1 )  ->  E. a  e.  ZZ  ( a  .x.  ( ( 1  +  ( k  x.  P
) )  .x.  C
) )  =  C )
149103, 104, 110, 147, 148syl31anc 1216 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  E. a  e.  ZZ  ( a  .x.  ( ( 1  +  ( k  x.  P
) )  .x.  C
) )  =  C )
15049ad2antrr 720 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  a  e.  ZZ )  ->  ( S  .(+)  W )  e.  (SubGrp `  G )
)
151 simpr 458 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  a  e.  ZZ )  ->  a  e.  ZZ )
15211subgmulgcl 15687 . . . . . . . . 9  |-  ( ( ( S  .(+)  W )  e.  (SubGrp `  G
)  /\  a  e.  ZZ  /\  ( ( 1  +  ( k  x.  P ) )  .x.  C )  e.  ( S  .(+)  W )
)  ->  ( a  .x.  ( ( 1  +  ( k  x.  P
) )  .x.  C
) )  e.  ( S  .(+)  W )
)
1531523expia 1184 . . . . . . . 8  |-  ( ( ( S  .(+)  W )  e.  (SubGrp `  G
)  /\  a  e.  ZZ )  ->  ( ( ( 1  +  ( k  x.  P ) )  .x.  C )  e.  ( S  .(+)  W )  ->  ( a  .x.  ( ( 1  +  ( k  x.  P
) )  .x.  C
) )  e.  ( S  .(+)  W )
) )
154150, 151, 153syl2anc 656 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  a  e.  ZZ )  ->  (
( ( 1  +  ( k  x.  P
) )  .x.  C
)  e.  ( S 
.(+)  W )  ->  (
a  .x.  ( (
1  +  ( k  x.  P ) ) 
.x.  C ) )  e.  ( S  .(+)  W ) ) )
155 eleq1 2501 . . . . . . . 8  |-  ( ( a  .x.  ( ( 1  +  ( k  x.  P ) ) 
.x.  C ) )  =  C  ->  (
( a  .x.  (
( 1  +  ( k  x.  P ) )  .x.  C ) )  e.  ( S 
.(+)  W )  <->  C  e.  ( S  .(+)  W ) ) )
156155imbi2d 316 . . . . . . 7  |-  ( ( a  .x.  ( ( 1  +  ( k  x.  P ) ) 
.x.  C ) )  =  C  ->  (
( ( ( 1  +  ( k  x.  P ) )  .x.  C )  e.  ( S  .(+)  W )  ->  ( a  .x.  (
( 1  +  ( k  x.  P ) )  .x.  C ) )  e.  ( S 
.(+)  W ) )  <->  ( (
( 1  +  ( k  x.  P ) )  .x.  C )  e.  ( S  .(+)  W )  ->  C  e.  ( S  .(+)  W ) ) ) )
157154, 156syl5ibcom 220 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ZZ )  /\  a  e.  ZZ )  ->  (
( a  .x.  (
( 1  +  ( k  x.  P ) )  .x.  C ) )  =  C  -> 
( ( ( 1  +  ( k  x.  P ) )  .x.  C )  e.  ( S  .(+)  W )  ->  C  e.  ( S 
.(+)  W ) ) ) )
158157rexlimdva 2839 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( E. a  e.  ZZ  (
a  .x.  ( (
1  +  ( k  x.  P ) ) 
.x.  C ) )  =  C  ->  (
( ( 1  +  ( k  x.  P
) )  .x.  C
)  e.  ( S 
.(+)  W )  ->  C  e.  ( S  .(+)  W ) ) ) )
159149, 158mpd 15 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( ( 1  +  ( k  x.  P ) )  .x.  C )  e.  ( S  .(+)  W )  ->  C  e.  ( S  .(+)  W ) ) )
160159rexlimdva 2839 . . 3  |-  ( ph  ->  ( E. k  e.  ZZ  ( ( 1  +  ( k  x.  P ) )  .x.  C )  e.  ( S  .(+)  W )  ->  C  e.  ( S 
.(+)  W ) ) )
161102, 160syld 44 . 2  |-  ( ph  ->  ( -.  ( P 
.x.  C )  e.  ( S  .(+)  W )  ->  C  e.  ( S  .(+)  W )
) )
1622, 161mt3d 125 1  |-  ( ph  ->  ( P  .x.  C
)  e.  ( S 
.(+)  W ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   _Vcvv 2970    \ cdif 3322    i^i cin 3324    C_ wss 3325    C. wpss 3326   (/)c0 3634   {csn 3874   class class class wbr 4289    e. cmpt 4347   ran crn 4837   ` cfv 5415  (class class class)co 6090   Fincfn 7306   1c1 9279    + caddc 9281    x. cmul 9283   NNcn 10318   NN0cn0 10575   ZZcz 10642   ^cexp 11861   #chash 12099    || cdivides 13531    gcd cgcd 13686   Primecprime 13759    pCnt cpc 13899   Basecbs 14170   +g cplusg 14234   0gc0g 14374  Moorecmre 14516  mrClscmrc 14517  ACScacs 14519   Grpcgrp 15406   -gcsg 15409  .gcmg 15410  SubGrpcsubg 15668   odcod 16021  gExcgex 16022   pGrp cpgp 16023   LSSumclsm 16126   Abelcabel 16271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-disj 4260  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-omul 6921  df-er 7097  df-ec 7099  df-qs 7103  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-oi 7720  df-card 8105  df-acn 8108  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-fac 12048  df-bc 12075  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-clim 12962  df-sum 13160  df-dvds 13532  df-gcd 13687  df-prm 13760  df-pc 13900  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-mulg 15541  df-subg 15671  df-eqg 15673  df-ga 15801  df-cntz 15828  df-od 16025  df-pgp 16027  df-lsm 16128  df-cmn 16272  df-abl 16273
This theorem is referenced by:  pgpfac1lem4  16569
  Copyright terms: Public domain W3C validator