MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem1 Structured version   Unicode version

Theorem pgpfac1lem1 17323
Description: Lemma for pgpfac1 17329. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
pgpfac1.au  |-  ( ph  ->  A  e.  U )
pgpfac1.w  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
pgpfac1.i  |-  ( ph  ->  ( S  i^i  W
)  =  {  .0.  } )
pgpfac1.ss  |-  ( ph  ->  ( S  .(+)  W ) 
C_  U )
pgpfac1.2  |-  ( ph  ->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  ( S  .(+)  W )  C.  w )
)
Assertion
Ref Expression
pgpfac1lem1  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  =  U )
Distinct variable groups:    w, A    w, 
.(+)    w, P    w, G    w, U    w, C    w, S    w, W    ph, w    w, K
Allowed substitution hints:    B( w)    E( w)    O( w)    .0. ( w)

Proof of Theorem pgpfac1lem1
StepHypRef Expression
1 pgpfac1.ss . . . 4  |-  ( ph  ->  ( S  .(+)  W ) 
C_  U )
21adantr 463 . . 3  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( S  .(+) 
W )  C_  U
)
3 pgpfac1.g . . . . . 6  |-  ( ph  ->  G  e.  Abel )
4 ablgrp 17005 . . . . . 6  |-  ( G  e.  Abel  ->  G  e. 
Grp )
5 pgpfac1.b . . . . . . 7  |-  B  =  ( Base `  G
)
65subgacs 16438 . . . . . 6  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  B ) )
7 acsmre 15144 . . . . . 6  |-  ( (SubGrp `  G )  e.  (ACS
`  B )  -> 
(SubGrp `  G )  e.  (Moore `  B )
)
83, 4, 6, 74syl 21 . . . . 5  |-  ( ph  ->  (SubGrp `  G )  e.  (Moore `  B )
)
98adantr 463 . . . 4  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  (SubGrp `  G
)  e.  (Moore `  B ) )
10 eldifi 3612 . . . . . 6  |-  ( C  e.  ( U  \ 
( S  .(+)  W ) )  ->  C  e.  U )
1110adantl 464 . . . . 5  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  C  e.  U )
1211snssd 4161 . . . 4  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  { C }  C_  U )
13 pgpfac1.u . . . . 5  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
1413adantr 463 . . . 4  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  U  e.  (SubGrp `  G ) )
15 pgpfac1.k . . . . 5  |-  K  =  (mrCls `  (SubGrp `  G
) )
1615mrcsscl 15112 . . . 4  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  { C }  C_  U  /\  U  e.  (SubGrp `  G ) )  -> 
( K `  { C } )  C_  U
)
179, 12, 14, 16syl3anc 1226 . . 3  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( K `  { C } ) 
C_  U )
18 pgpfac1.s . . . . . . 7  |-  S  =  ( K `  { A } )
195subgss 16404 . . . . . . . . . 10  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  B
)
2013, 19syl 16 . . . . . . . . 9  |-  ( ph  ->  U  C_  B )
21 pgpfac1.au . . . . . . . . 9  |-  ( ph  ->  A  e.  U )
2220, 21sseldd 3490 . . . . . . . 8  |-  ( ph  ->  A  e.  B )
2315mrcsncl 15104 . . . . . . . 8  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  A  e.  B
)  ->  ( K `  { A } )  e.  (SubGrp `  G
) )
248, 22, 23syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( K `  { A } )  e.  (SubGrp `  G ) )
2518, 24syl5eqel 2546 . . . . . 6  |-  ( ph  ->  S  e.  (SubGrp `  G ) )
26 pgpfac1.w . . . . . 6  |-  ( ph  ->  W  e.  (SubGrp `  G ) )
27 pgpfac1.l . . . . . . 7  |-  .(+)  =  (
LSSum `  G )
2827lsmsubg2 17067 . . . . . 6  |-  ( ( G  e.  Abel  /\  S  e.  (SubGrp `  G )  /\  W  e.  (SubGrp `  G ) )  -> 
( S  .(+)  W )  e.  (SubGrp `  G
) )
293, 25, 26, 28syl3anc 1226 . . . . 5  |-  ( ph  ->  ( S  .(+)  W )  e.  (SubGrp `  G
) )
3029adantr 463 . . . 4  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( S  .(+) 
W )  e.  (SubGrp `  G ) )
3120sselda 3489 . . . . . 6  |-  ( (
ph  /\  C  e.  U )  ->  C  e.  B )
3210, 31sylan2 472 . . . . 5  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  C  e.  B )
3315mrcsncl 15104 . . . . 5  |-  ( ( (SubGrp `  G )  e.  (Moore `  B )  /\  C  e.  B
)  ->  ( K `  { C } )  e.  (SubGrp `  G
) )
349, 32, 33syl2anc 659 . . . 4  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( K `  { C } )  e.  (SubGrp `  G
) )
3527lsmlub 16885 . . . 4  |-  ( ( ( S  .(+)  W )  e.  (SubGrp `  G
)  /\  ( K `  { C } )  e.  (SubGrp `  G
)  /\  U  e.  (SubGrp `  G ) )  ->  ( ( ( S  .(+)  W )  C_  U  /\  ( K `
 { C }
)  C_  U )  <->  ( ( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) 
C_  U ) )
3630, 34, 14, 35syl3anc 1226 . . 3  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( (
( S  .(+)  W ) 
C_  U  /\  ( K `  { C } )  C_  U
)  <->  ( ( S 
.(+)  W )  .(+)  ( K `
 { C }
) )  C_  U
) )
372, 17, 36mpbi2and 919 . 2  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  C_  U )
3827lsmub1 16878 . . . . . 6  |-  ( ( ( S  .(+)  W )  e.  (SubGrp `  G
)  /\  ( K `  { C } )  e.  (SubGrp `  G
) )  ->  ( S  .(+)  W )  C_  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) ) )
3930, 34, 38syl2anc 659 . . . . 5  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( S  .(+) 
W )  C_  (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) )
4027lsmub2 16879 . . . . . . 7  |-  ( ( ( S  .(+)  W )  e.  (SubGrp `  G
)  /\  ( K `  { C } )  e.  (SubGrp `  G
) )  ->  ( K `  { C } )  C_  (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) )
4130, 34, 40syl2anc 659 . . . . . 6  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( K `  { C } ) 
C_  ( ( S 
.(+)  W )  .(+)  ( K `
 { C }
) ) )
4232snssd 4161 . . . . . . . 8  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  { C }  C_  B )
439, 15, 42mrcssidd 15117 . . . . . . 7  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  { C }  C_  ( K `  { C } ) )
44 snssg 4149 . . . . . . . 8  |-  ( C  e.  B  ->  ( C  e.  ( K `  { C } )  <->  { C }  C_  ( K `  { C } ) ) )
4532, 44syl 16 . . . . . . 7  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( C  e.  ( K `  { C } )  <->  { C }  C_  ( K `  { C } ) ) )
4643, 45mpbird 232 . . . . . 6  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  C  e.  ( K `  { C } ) )
4741, 46sseldd 3490 . . . . 5  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  C  e.  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) ) )
48 eldifn 3613 . . . . . 6  |-  ( C  e.  ( U  \ 
( S  .(+)  W ) )  ->  -.  C  e.  ( S  .(+)  W ) )
4948adantl 464 . . . . 5  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  -.  C  e.  ( S  .(+)  W ) )
5039, 47, 49ssnelpssd 3879 . . . 4  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( S  .(+) 
W )  C.  (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) )
5127lsmub1 16878 . . . . . . . . 9  |-  ( ( S  e.  (SubGrp `  G )  /\  W  e.  (SubGrp `  G )
)  ->  S  C_  ( S  .(+)  W ) )
5225, 26, 51syl2anc 659 . . . . . . . 8  |-  ( ph  ->  S  C_  ( S  .(+) 
W ) )
5322snssd 4161 . . . . . . . . . . 11  |-  ( ph  ->  { A }  C_  B )
548, 15, 53mrcssidd 15117 . . . . . . . . . 10  |-  ( ph  ->  { A }  C_  ( K `  { A } ) )
5554, 18syl6sseqr 3536 . . . . . . . . 9  |-  ( ph  ->  { A }  C_  S )
56 snssg 4149 . . . . . . . . . 10  |-  ( A  e.  U  ->  ( A  e.  S  <->  { A }  C_  S ) )
5721, 56syl 16 . . . . . . . . 9  |-  ( ph  ->  ( A  e.  S  <->  { A }  C_  S
) )
5855, 57mpbird 232 . . . . . . . 8  |-  ( ph  ->  A  e.  S )
5952, 58sseldd 3490 . . . . . . 7  |-  ( ph  ->  A  e.  ( S 
.(+)  W ) )
6059adantr 463 . . . . . 6  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  A  e.  ( S  .(+)  W ) )
6139, 60sseldd 3490 . . . . 5  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  A  e.  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) ) )
623adantr 463 . . . . . . 7  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  G  e.  Abel )
6327lsmsubg2 17067 . . . . . . 7  |-  ( ( G  e.  Abel  /\  ( S  .(+)  W )  e.  (SubGrp `  G )  /\  ( K `  { C } )  e.  (SubGrp `  G ) )  -> 
( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  e.  (SubGrp `  G ) )
6462, 30, 34, 63syl3anc 1226 . . . . . 6  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  e.  (SubGrp `  G )
)
65 pgpfac1.2 . . . . . . 7  |-  ( ph  ->  A. w  e.  (SubGrp `  G ) ( ( w  C.  U  /\  A  e.  w )  ->  -.  ( S  .(+)  W )  C.  w )
)
6665adantr 463 . . . . . 6  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  A. w  e.  (SubGrp `  G )
( ( w  C.  U  /\  A  e.  w
)  ->  -.  ( S  .(+)  W )  C.  w ) )
67 psseq1 3577 . . . . . . . . 9  |-  ( w  =  ( ( S 
.(+)  W )  .(+)  ( K `
 { C }
) )  ->  (
w  C.  U  <->  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  C.  U ) )
68 eleq2 2527 . . . . . . . . 9  |-  ( w  =  ( ( S 
.(+)  W )  .(+)  ( K `
 { C }
) )  ->  ( A  e.  w  <->  A  e.  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) ) ) )
6967, 68anbi12d 708 . . . . . . . 8  |-  ( w  =  ( ( S 
.(+)  W )  .(+)  ( K `
 { C }
) )  ->  (
( w  C.  U  /\  A  e.  w
)  <->  ( ( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  C.  U  /\  A  e.  ( ( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) ) ) )
70 psseq2 3578 . . . . . . . . 9  |-  ( w  =  ( ( S 
.(+)  W )  .(+)  ( K `
 { C }
) )  ->  (
( S  .(+)  W ) 
C.  w  <->  ( S  .(+) 
W )  C.  (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) ) )
7170notbid 292 . . . . . . . 8  |-  ( w  =  ( ( S 
.(+)  W )  .(+)  ( K `
 { C }
) )  ->  ( -.  ( S  .(+)  W ) 
C.  w  <->  -.  ( S  .(+)  W )  C.  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) ) ) )
7269, 71imbi12d 318 . . . . . . 7  |-  ( w  =  ( ( S 
.(+)  W )  .(+)  ( K `
 { C }
) )  ->  (
( ( w  C.  U  /\  A  e.  w
)  ->  -.  ( S  .(+)  W )  C.  w )  <->  ( (
( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  C.  U  /\  A  e.  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) ) )  ->  -.  ( S  .(+) 
W )  C.  (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) ) ) )
7372rspcv 3203 . . . . . 6  |-  ( ( ( S  .(+)  W ) 
.(+)  ( K `  { C } ) )  e.  (SubGrp `  G
)  ->  ( A. w  e.  (SubGrp `  G
) ( ( w 
C.  U  /\  A  e.  w )  ->  -.  ( S  .(+)  W ) 
C.  w )  -> 
( ( ( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  C.  U  /\  A  e.  ( ( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) )  ->  -.  ( S  .(+)  W )  C.  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) ) ) ) )
7464, 66, 73sylc 60 . . . . 5  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( (
( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  C.  U  /\  A  e.  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) ) )  ->  -.  ( S  .(+) 
W )  C.  (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) ) )
7561, 74mpan2d 672 . . . 4  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) 
C.  U  ->  -.  ( S  .(+)  W ) 
C.  ( ( S 
.(+)  W )  .(+)  ( K `
 { C }
) ) ) )
7650, 75mt2d 117 . . 3  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  -.  (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) 
C.  U )
77 npss 3600 . . 3  |-  ( -.  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  C.  U  <->  ( (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) 
C_  U  ->  (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) )  =  U ) )
7876, 77sylib 196 . 2  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) ) 
C_  U  ->  (
( S  .(+)  W ) 
.(+)  ( K `  { C } ) )  =  U ) )
7937, 78mpd 15 1  |-  ( (
ph  /\  C  e.  ( U  \  ( S  .(+)  W ) ) )  ->  ( ( S  .(+)  W )  .(+)  ( K `  { C } ) )  =  U )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804    \ cdif 3458    i^i cin 3460    C_ wss 3461    C. wpss 3462   {csn 4016   class class class wbr 4439   ` cfv 5570  (class class class)co 6270   Fincfn 7509   Basecbs 14719   0gc0g 14932  Moorecmre 15074  mrClscmrc 15075  ACScacs 15077   Grpcgrp 16255  SubGrpcsubg 16397   odcod 16751  gExcgex 16752   pGrp cpgp 16753   LSSumclsm 16856   Abelcabl 17001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-0g 14934  df-mre 15078  df-mrc 15079  df-acs 15081  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-submnd 16169  df-grp 16259  df-minusg 16260  df-subg 16400  df-cntz 16557  df-lsm 16858  df-cmn 17002  df-abl 17003
This theorem is referenced by:  pgpfac1lem2  17324  pgpfac1lem3  17326
  Copyright terms: Public domain W3C validator