MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1 Structured version   Unicode version

Theorem pgpfac1 16580
Description: Factorization of a finite abelian p-group. There is a direct product decomposition of any abelian group of prime-power order where one of the factors is cyclic and generated by an element of maximal order. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k  |-  K  =  (mrCls `  (SubGrp `  G
) )
pgpfac1.s  |-  S  =  ( K `  { A } )
pgpfac1.b  |-  B  =  ( Base `  G
)
pgpfac1.o  |-  O  =  ( od `  G
)
pgpfac1.e  |-  E  =  (gEx `  G )
pgpfac1.z  |-  .0.  =  ( 0g `  G )
pgpfac1.l  |-  .(+)  =  (
LSSum `  G )
pgpfac1.p  |-  ( ph  ->  P pGrp  G )
pgpfac1.g  |-  ( ph  ->  G  e.  Abel )
pgpfac1.n  |-  ( ph  ->  B  e.  Fin )
pgpfac1.oe  |-  ( ph  ->  ( O `  A
)  =  E )
pgpfac1.ab  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
pgpfac1  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  B ) )
Distinct variable groups:    t,  .0.    t, A    t,  .(+)    t, P   
t, B    t, G    t, S    ph, t    t, K
Allowed substitution hints:    E( t)    O( t)

Proof of Theorem pgpfac1
Dummy variables  s  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.g . . 3  |-  ( ph  ->  G  e.  Abel )
2 ablgrp 16281 . . 3  |-  ( G  e.  Abel  ->  G  e. 
Grp )
3 pgpfac1.b . . . 4  |-  B  =  ( Base `  G
)
43subgid 15682 . . 3  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
51, 2, 43syl 20 . 2  |-  ( ph  ->  B  e.  (SubGrp `  G ) )
6 pgpfac1.ab . 2  |-  ( ph  ->  A  e.  B )
7 pgpfac1.n . . 3  |-  ( ph  ->  B  e.  Fin )
8 eleq1 2502 . . . . . . 7  |-  ( s  =  u  ->  (
s  e.  (SubGrp `  G )  <->  u  e.  (SubGrp `  G ) ) )
9 eleq2 2503 . . . . . . 7  |-  ( s  =  u  ->  ( A  e.  s  <->  A  e.  u ) )
108, 9anbi12d 710 . . . . . 6  |-  ( s  =  u  ->  (
( s  e.  (SubGrp `  G )  /\  A  e.  s )  <->  ( u  e.  (SubGrp `  G )  /\  A  e.  u
) ) )
11 eqeq2 2451 . . . . . . . 8  |-  ( s  =  u  ->  (
( S  .(+)  t )  =  s  <->  ( S  .(+) 
t )  =  u ) )
1211anbi2d 703 . . . . . . 7  |-  ( s  =  u  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  u ) ) )
1312rexbidv 2735 . . . . . 6  |-  ( s  =  u  ->  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) )
1410, 13imbi12d 320 . . . . 5  |-  ( s  =  u  ->  (
( ( s  e.  (SubGrp `  G )  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  <->  ( (
u  e.  (SubGrp `  G )  /\  A  e.  u )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
1514imbi2d 316 . . . 4  |-  ( s  =  u  ->  (
( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( ph  ->  ( ( u  e.  (SubGrp `  G )  /\  A  e.  u )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) ) )
16 eleq1 2502 . . . . . . 7  |-  ( s  =  B  ->  (
s  e.  (SubGrp `  G )  <->  B  e.  (SubGrp `  G ) ) )
17 eleq2 2503 . . . . . . 7  |-  ( s  =  B  ->  ( A  e.  s  <->  A  e.  B ) )
1816, 17anbi12d 710 . . . . . 6  |-  ( s  =  B  ->  (
( s  e.  (SubGrp `  G )  /\  A  e.  s )  <->  ( B  e.  (SubGrp `  G )  /\  A  e.  B
) ) )
19 eqeq2 2451 . . . . . . . 8  |-  ( s  =  B  ->  (
( S  .(+)  t )  =  s  <->  ( S  .(+) 
t )  =  B ) )
2019anbi2d 703 . . . . . . 7  |-  ( s  =  B  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s )  <->  ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  B ) ) )
2120rexbidv 2735 . . . . . 6  |-  ( s  =  B  ->  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) )
2218, 21imbi12d 320 . . . . 5  |-  ( s  =  B  ->  (
( ( s  e.  (SubGrp `  G )  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  <->  ( ( B  e.  (SubGrp `  G
)  /\  A  e.  B )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) ) )
2322imbi2d 316 . . . 4  |-  ( s  =  B  ->  (
( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( ph  ->  ( ( B  e.  (SubGrp `  G )  /\  A  e.  B )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) ) ) )
24 bi2.04 361 . . . . . . . . . . 11  |-  ( ( s  C.  u  ->  ( s  e.  (SubGrp `  G )  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) )  <->  ( s  e.  (SubGrp `  G )  ->  ( s  C.  u  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) ) )
25 impexp 446 . . . . . . . . . . . 12  |-  ( ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  <->  ( s  e.  (SubGrp `  G )  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) )
2625imbi2i 312 . . . . . . . . . . 11  |-  ( ( s  C.  u  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( s  C.  u  ->  ( s  e.  (SubGrp `  G )  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) ) )
27 impexp 446 . . . . . . . . . . . 12  |-  ( ( ( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  <->  ( s  C.  u  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )
2827imbi2i 312 . . . . . . . . . . 11  |-  ( ( s  e.  (SubGrp `  G )  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( s  e.  (SubGrp `  G )  ->  (
s  C.  u  ->  ( A  e.  s  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) ) )
2924, 26, 283bitr4i 277 . . . . . . . . . 10  |-  ( ( s  C.  u  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( s  e.  (SubGrp `  G )  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )
3029imbi2i 312 . . . . . . . . 9  |-  ( (
ph  ->  ( s  C.  u  ->  ( ( s  e.  (SubGrp `  G
)  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( ph  ->  ( s  e.  (SubGrp `  G )  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
31 bi2.04 361 . . . . . . . . 9  |-  ( ( s  C.  u  ->  (
ph  ->  ( ( s  e.  (SubGrp `  G
)  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( ph  ->  ( s  C.  u  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
32 bi2.04 361 . . . . . . . . 9  |-  ( ( s  e.  (SubGrp `  G )  ->  ( ph  ->  ( ( s 
C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( ph  ->  ( s  e.  (SubGrp `  G )  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
3330, 31, 323bitr4i 277 . . . . . . . 8  |-  ( ( s  C.  u  ->  (
ph  ->  ( ( s  e.  (SubGrp `  G
)  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( s  e.  (SubGrp `  G )  ->  ( ph  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
3433albii 1610 . . . . . . 7  |-  ( A. s ( s  C.  u  ->  ( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  A. s ( s  e.  (SubGrp `  G
)  ->  ( ph  ->  ( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
35 df-ral 2719 . . . . . . 7  |-  ( A. s  e.  (SubGrp `  G
) ( ph  ->  ( ( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <->  A. s ( s  e.  (SubGrp `  G )  ->  ( ph  ->  (
( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) ) )
36 r19.21v 2802 . . . . . . 7  |-  ( A. s  e.  (SubGrp `  G
) ( ph  ->  ( ( s  C.  u  /\  A  e.  s
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )  <-> 
( ph  ->  A. s  e.  (SubGrp `  G )
( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )
3734, 35, 363bitr2i 273 . . . . . 6  |-  ( A. s ( s  C.  u  ->  ( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  <->  ( ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) )
38 psseq1 3442 . . . . . . . . . . 11  |-  ( x  =  s  ->  (
x  C.  u  <->  s  C.  u
) )
39 eleq2 2503 . . . . . . . . . . 11  |-  ( x  =  s  ->  ( A  e.  x  <->  A  e.  s ) )
4038, 39anbi12d 710 . . . . . . . . . 10  |-  ( x  =  s  ->  (
( x  C.  u  /\  A  e.  x
)  <->  ( s  C.  u  /\  A  e.  s ) ) )
41 ineq2 3545 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  ( S  i^i  y )  =  ( S  i^i  t
) )
4241eqeq1d 2450 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( S  i^i  y
)  =  {  .0.  }  <-> 
( S  i^i  t
)  =  {  .0.  } ) )
43 oveq2 6098 . . . . . . . . . . . . . 14  |-  ( y  =  t  ->  ( S  .(+)  y )  =  ( S  .(+)  t ) )
4443eqeq1d 2450 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( S  .(+)  y )  =  x  <->  ( S  .(+) 
t )  =  x ) )
4542, 44anbi12d 710 . . . . . . . . . . . 12  |-  ( y  =  t  ->  (
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x )  <->  ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  x ) ) )
4645cbvrexv 2947 . . . . . . . . . . 11  |-  ( E. y  e.  (SubGrp `  G ) ( ( S  i^i  y )  =  {  .0.  }  /\  ( S  .(+)  y )  =  x )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  x ) )
47 eqeq2 2451 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  (
( S  .(+)  t )  =  x  <->  ( S  .(+) 
t )  =  s ) )
4847anbi2d 703 . . . . . . . . . . . 12  |-  ( x  =  s  ->  (
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  x )  <->  ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
4948rexbidv 2735 . . . . . . . . . . 11  |-  ( x  =  s  ->  ( E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  x )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
5046, 49syl5bb 257 . . . . . . . . . 10  |-  ( x  =  s  ->  ( E. y  e.  (SubGrp `  G ) ( ( S  i^i  y )  =  {  .0.  }  /\  ( S  .(+)  y )  =  x )  <->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
5140, 50imbi12d 320 . . . . . . . . 9  |-  ( x  =  s  ->  (
( ( x  C.  u  /\  A  e.  x
)  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  <->  ( (
s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) ) )
5251cbvralv 2946 . . . . . . . 8  |-  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  <->  A. s  e.  (SubGrp `  G )
( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) )
53 pgpfac1.k . . . . . . . . . 10  |-  K  =  (mrCls `  (SubGrp `  G
) )
54 pgpfac1.s . . . . . . . . . 10  |-  S  =  ( K `  { A } )
55 pgpfac1.o . . . . . . . . . 10  |-  O  =  ( od `  G
)
56 pgpfac1.e . . . . . . . . . 10  |-  E  =  (gEx `  G )
57 pgpfac1.z . . . . . . . . . 10  |-  .0.  =  ( 0g `  G )
58 pgpfac1.l . . . . . . . . . 10  |-  .(+)  =  (
LSSum `  G )
59 pgpfac1.p . . . . . . . . . . 11  |-  ( ph  ->  P pGrp  G )
6059adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  P pGrp  G )
611adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  G  e.  Abel )
627adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  B  e.  Fin )
63 pgpfac1.oe . . . . . . . . . . 11  |-  ( ph  ->  ( O `  A
)  =  E )
6463adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  ( O `  A )  =  E )
65 simprrl 763 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  u  e.  (SubGrp `  G ) )
66 simprrr 764 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  A  e.  u
)
67 simprl 755 . . . . . . . . . . 11  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  A. x  e.  (SubGrp `  G ) ( ( x  C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G ) ( ( S  i^i  y )  =  {  .0.  }  /\  ( S  .(+)  y )  =  x ) ) )
6867, 52sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )
6953, 54, 3, 55, 56, 57, 58, 60, 61, 62, 64, 65, 66, 68pgpfac1lem5 16579 . . . . . . . . 9  |-  ( (
ph  /\  ( A. x  e.  (SubGrp `  G
) ( ( x 
C.  u  /\  A  e.  x )  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  /\  ( u  e.  (SubGrp `  G )  /\  A  e.  u ) ) )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  u ) )
7069exp32 605 . . . . . . . 8  |-  ( ph  ->  ( A. x  e.  (SubGrp `  G )
( ( x  C.  u  /\  A  e.  x
)  ->  E. y  e.  (SubGrp `  G )
( ( S  i^i  y )  =  {  .0.  }  /\  ( S 
.(+)  y )  =  x ) )  -> 
( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
7152, 70syl5bir 218 . . . . . . 7  |-  ( ph  ->  ( A. s  e.  (SubGrp `  G )
( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) )  -> 
( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
7271a2i 13 . . . . . 6  |-  ( (
ph  ->  A. s  e.  (SubGrp `  G ) ( ( s  C.  u  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  s ) ) )  ->  ( ph  ->  ( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
7337, 72sylbi 195 . . . . 5  |-  ( A. s ( s  C.  u  ->  ( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  ->  ( ph  ->  ( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) )
7473a1i 11 . . . 4  |-  ( u  e.  Fin  ->  ( A. s ( s  C.  u  ->  ( ph  ->  ( ( s  e.  (SubGrp `  G )  /\  A  e.  s )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  s ) ) ) )  ->  ( ph  ->  ( ( u  e.  (SubGrp `  G )  /\  A  e.  u
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  u ) ) ) ) )
7515, 23, 74findcard3 7554 . . 3  |-  ( B  e.  Fin  ->  ( ph  ->  ( ( B  e.  (SubGrp `  G
)  /\  A  e.  B )  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) ) )
767, 75mpcom 36 . 2  |-  ( ph  ->  ( ( B  e.  (SubGrp `  G )  /\  A  e.  B
)  ->  E. t  e.  (SubGrp `  G )
( ( S  i^i  t )  =  {  .0.  }  /\  ( S 
.(+)  t )  =  B ) ) )
775, 6, 76mp2and 679 1  |-  ( ph  ->  E. t  e.  (SubGrp `  G ) ( ( S  i^i  t )  =  {  .0.  }  /\  ( S  .(+)  t )  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   A.wal 1367    = wceq 1369    e. wcel 1756   A.wral 2714   E.wrex 2715    i^i cin 3326    C. wpss 3328   {csn 3876   class class class wbr 4291   ` cfv 5417  (class class class)co 6090   Fincfn 7309   Basecbs 14173   0gc0g 14377  mrClscmrc 14520   Grpcgrp 15409  SubGrpcsubg 15674   odcod 16027  gExcgex 16028   pGrp cpgp 16029   LSSumclsm 16132   Abelcabel 16277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-inf2 7846  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-iin 4173  df-disj 4262  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-rpss 6359  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6831  df-rdg 6865  df-1o 6919  df-2o 6920  df-oadd 6923  df-omul 6924  df-er 7100  df-ec 7102  df-qs 7106  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-sup 7690  df-oi 7723  df-card 8108  df-acn 8111  df-cda 8336  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-n0 10579  df-z 10646  df-uz 10861  df-q 10953  df-rp 10991  df-fz 11437  df-fzo 11548  df-fl 11641  df-mod 11708  df-seq 11806  df-exp 11865  df-fac 12051  df-bc 12078  df-hash 12103  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-clim 12965  df-sum 13163  df-dvds 13535  df-gcd 13690  df-prm 13763  df-pc 13903  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-0g 14379  df-mre 14523  df-mrc 14524  df-acs 14526  df-mnd 15414  df-submnd 15464  df-grp 15544  df-minusg 15545  df-sbg 15546  df-mulg 15547  df-subg 15677  df-eqg 15679  df-ga 15807  df-cntz 15834  df-od 16031  df-gex 16032  df-pgp 16033  df-lsm 16134  df-cmn 16278  df-abl 16279
This theorem is referenced by:  pgpfaclem3  16583
  Copyright terms: Public domain W3C validator