MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pf1rcl Structured version   Unicode version

Theorem pf1rcl 18156
Description: Reverse closure for the set of polynomial functions. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypothesis
Ref Expression
pf1rcl.q  |-  Q  =  ran  (eval1 `  R )
Assertion
Ref Expression
pf1rcl  |-  ( X  e.  Q  ->  R  e.  CRing )

Proof of Theorem pf1rcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0i 3790 . 2  |-  ( X  e.  Q  ->  -.  Q  =  (/) )
2 pf1rcl.q . . . 4  |-  Q  =  ran  (eval1 `  R )
3 eqid 2467 . . . . . 6  |-  (eval1 `  R
)  =  (eval1 `  R
)
4 eqid 2467 . . . . . 6  |-  ( 1o eval  R )  =  ( 1o eval  R )
5 eqid 2467 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
63, 4, 5evl1fval 18135 . . . . 5  |-  (eval1 `  R
)  =  ( ( x  e.  ( (
Base `  R )  ^m  ( ( Base `  R
)  ^m  1o )
)  |->  ( x  o.  ( y  e.  (
Base `  R )  |->  ( 1o  X.  {
y } ) ) ) )  o.  ( 1o eval  R ) )
76rneqi 5227 . . . 4  |-  ran  (eval1 `  R )  =  ran  ( ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  R ) )
8 rnco2 5512 . . . 4  |-  ran  (
( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  o.  ( 1o eval  R ) )  =  ( ( x  e.  ( (
Base `  R )  ^m  ( ( Base `  R
)  ^m  1o )
)  |->  ( x  o.  ( y  e.  (
Base `  R )  |->  ( 1o  X.  {
y } ) ) ) ) " ran  ( 1o eval  R )
)
92, 7, 83eqtri 2500 . . 3  |-  Q  =  ( ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) ) " ran  ( 1o eval  R ) )
10 inss2 3719 . . . . 5  |-  ( dom  ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  C_  ran  ( 1o eval  R )
11 neq0 3795 . . . . . . 7  |-  ( -. 
ran  ( 1o eval  R
)  =  (/)  <->  E. x  x  e.  ran  ( 1o eval  R ) )
124, 5evlval 17964 . . . . . . . . . . 11  |-  ( 1o eval  R )  =  ( ( 1o evalSub  R ) `  ( Base `  R
) )
1312rneqi 5227 . . . . . . . . . 10  |-  ran  ( 1o eval  R )  =  ran  ( ( 1o evalSub  R ) `
 ( Base `  R
) )
1413mpfrcl 17958 . . . . . . . . 9  |-  ( x  e.  ran  ( 1o eval  R )  ->  ( 1o  e.  _V  /\  R  e.  CRing  /\  ( Base `  R )  e.  (SubRing `  R ) ) )
1514simp2d 1009 . . . . . . . 8  |-  ( x  e.  ran  ( 1o eval  R )  ->  R  e.  CRing )
1615exlimiv 1698 . . . . . . 7  |-  ( E. x  x  e.  ran  ( 1o eval  R )  ->  R  e.  CRing )
1711, 16sylbi 195 . . . . . 6  |-  ( -. 
ran  ( 1o eval  R
)  =  (/)  ->  R  e.  CRing )
1817con1i 129 . . . . 5  |-  ( -.  R  e.  CRing  ->  ran  ( 1o eval  R )  =  (/) )
19 sseq0 3817 . . . . 5  |-  ( ( ( dom  ( x  e.  ( ( Base `  R )  ^m  (
( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  C_  ran  ( 1o eval  R )  /\  ran  ( 1o eval  R
)  =  (/) )  -> 
( dom  ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  =  (/) )
2010, 18, 19sylancr 663 . . . 4  |-  ( -.  R  e.  CRing  ->  ( dom  ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) )  i^i 
ran  ( 1o eval  R
) )  =  (/) )
21 imadisj 5354 . . . 4  |-  ( ( ( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) ) " ran  ( 1o eval  R ) )  =  (/)  <->  ( dom  ( x  e.  (
( Base `  R )  ^m  ( ( Base `  R
)  ^m  1o )
)  |->  ( x  o.  ( y  e.  (
Base `  R )  |->  ( 1o  X.  {
y } ) ) ) )  i^i  ran  ( 1o eval  R )
)  =  (/) )
2220, 21sylibr 212 . . 3  |-  ( -.  R  e.  CRing  ->  (
( x  e.  ( ( Base `  R
)  ^m  ( ( Base `  R )  ^m  1o ) )  |->  ( x  o.  ( y  e.  ( Base `  R
)  |->  ( 1o  X.  { y } ) ) ) ) " ran  ( 1o eval  R ) )  =  (/) )
239, 22syl5eq 2520 . 2  |-  ( -.  R  e.  CRing  ->  Q  =  (/) )
241, 23nsyl2 127 1  |-  ( X  e.  Q  ->  R  e.  CRing )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1379   E.wex 1596    e. wcel 1767   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   {csn 4027    |-> cmpt 4505    X. cxp 4997   dom cdm 4999   ran crn 5000   "cima 5002    o. ccom 5003   ` cfv 5586  (class class class)co 6282   1oc1o 7120    ^m cmap 7417   Basecbs 14486   CRingccrg 16987  SubRingcsubrg 17208   evalSub ces 17940   eval cevl 17941  eval1ce1 18122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-evls 17942  df-evl 17943  df-evl1 18124
This theorem is referenced by:  pf1f  18157  pf1mpf  18159  pf1addcl  18160  pf1mulcl  18161  pf1ind  18162
  Copyright terms: Public domain W3C validator