Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem8N Unicode version

Theorem pexmidlem8N 30459
Description: Lemma for pexmidN 30451. The contradiction of pexmidlem6N 30457 and pexmidlem7N 30458 shows that there can be no atom  p that is not in  X  .+  (  ._|_  `  X ), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a  |-  A  =  ( Atoms `  K )
pexmidALT.p  |-  .+  =  ( + P `  K
)
pexmidALT.o  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
pexmidlem8N  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )

Proof of Theorem pexmidlem8N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 nonconne 2574 . 2  |-  -.  ( X  =  X  /\  X  =/=  X )
2 simpll 731 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  ->  K  e.  HL )
3 simplr 732 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  ->  X  C_  A )
4 pexmidALT.a . . . . . . 7  |-  A  =  ( Atoms `  K )
5 pexmidALT.o . . . . . . 7  |-  ._|_  =  ( _|_ P `  K
)
64, 5polssatN 30390 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  C_  A )
76adantr 452 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
(  ._|_  `  X )  C_  A )
8 pexmidALT.p . . . . . 6  |-  .+  =  ( + P `  K
)
94, 8paddssat 30296 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  (  ._|_  `  X )  C_  A )  ->  ( X  .+  (  ._|_  `  X
) )  C_  A
)
102, 3, 7, 9syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( X  .+  (  ._|_  `  X ) ) 
C_  A )
11 df-pss 3296 . . . . . . 7  |-  ( ( X  .+  (  ._|_  `  X ) )  C.  A 
<->  ( ( X  .+  (  ._|_  `  X )
)  C_  A  /\  ( X  .+  (  ._|_  `  X ) )  =/= 
A ) )
12 pssnel 3653 . . . . . . 7  |-  ( ( X  .+  (  ._|_  `  X ) )  C.  A  ->  E. p ( p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )
1311, 12sylbir 205 . . . . . 6  |-  ( ( ( X  .+  (  ._|_  `  X ) ) 
C_  A  /\  ( X  .+  (  ._|_  `  X
) )  =/=  A
)  ->  E. p
( p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )
14 df-rex 2672 . . . . . 6  |-  ( E. p  e.  A  -.  p  e.  ( X  .+  (  ._|_  `  X
) )  <->  E. p
( p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )
1513, 14sylibr 204 . . . . 5  |-  ( ( ( X  .+  (  ._|_  `  X ) ) 
C_  A  /\  ( X  .+  (  ._|_  `  X
) )  =/=  A
)  ->  E. p  e.  A  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) )
16 simplll 735 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  K  e.  HL )
17 simpllr 736 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  X  C_  A
)
18 simprl 733 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  p  e.  A
)
19 simplrl 737 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
20 simplrr 738 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  X  =/=  (/) )
21 simprr 734 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) )
22 eqid 2404 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
23 eqid 2404 . . . . . . . . . 10  |-  ( join `  K )  =  (
join `  K )
24 eqid 2404 . . . . . . . . . 10  |-  ( X 
.+  { p }
)  =  ( X 
.+  { p }
)
2522, 23, 4, 8, 5, 24pexmidlem6N 30457 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  =  X )
2622, 23, 4, 8, 5, 24pexmidlem7N 30458 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  =/=  X )
2725, 26jca 519 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
( X  .+  {
p } )  =  X  /\  ( X 
.+  { p }
)  =/=  X ) )
2816, 17, 18, 19, 20, 21, 27syl33anc 1199 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  ( ( X 
.+  { p }
)  =  X  /\  ( X  .+  { p } )  =/=  X
) )
29 nonconne 2574 . . . . . . . 8  |-  -.  (
( X  .+  {
p } )  =  X  /\  ( X 
.+  { p }
)  =/=  X )
3029, 12false 340 . . . . . . 7  |-  ( ( ( X  .+  {
p } )  =  X  /\  ( X 
.+  { p }
)  =/=  X )  <-> 
( X  =  X  /\  X  =/=  X
) )
3128, 30sylib 189 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  ( X  =  X  /\  X  =/= 
X ) )
3231rexlimdvaa 2791 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( E. p  e.  A  -.  p  e.  ( X  .+  (  ._|_  `  X ) )  ->  ( X  =  X  /\  X  =/= 
X ) ) )
3315, 32syl5 30 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( ( ( X 
.+  (  ._|_  `  X
) )  C_  A  /\  ( X  .+  (  ._|_  `  X ) )  =/=  A )  -> 
( X  =  X  /\  X  =/=  X
) ) )
3410, 33mpand 657 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( ( X  .+  (  ._|_  `  X )
)  =/=  A  -> 
( X  =  X  /\  X  =/=  X
) ) )
3534necon1bd 2635 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( -.  ( X  =  X  /\  X  =/=  X )  ->  ( X  .+  (  ._|_  `  X
) )  =  A ) )
361, 35mpi 17 1  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   E.wrex 2667    C_ wss 3280    C. wpss 3281   (/)c0 3588   {csn 3774   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   Atomscatm 29746   HLchlt 29833   + Pcpadd 30277   _|_ PcpolN 30384
This theorem is referenced by:  pexmidALTN  30460
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-polarityN 30385  df-psubclN 30417
  Copyright terms: Public domain W3C validator