Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem8N Structured version   Unicode version

Theorem pexmidlem8N 33644
Description: Lemma for pexmidN 33636. The contradiction of pexmidlem6N 33642 and pexmidlem7N 33643 shows that there can be no atom  p that is not in  X  .+  (  ._|_  `  X ), which is therefore the whole atom space. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidALT.a  |-  A  =  ( Atoms `  K )
pexmidALT.p  |-  .+  =  ( +P `  K
)
pexmidALT.o  |-  ._|_  =  ( _|_P `  K
)
Assertion
Ref Expression
pexmidlem8N  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )

Proof of Theorem pexmidlem8N
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 nonconne 2630 . 2  |-  -.  ( X  =  X  /\  X  =/=  X )
2 simpll 753 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  ->  K  e.  HL )
3 simplr 754 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  ->  X  C_  A )
4 pexmidALT.a . . . . . . 7  |-  A  =  ( Atoms `  K )
5 pexmidALT.o . . . . . . 7  |-  ._|_  =  ( _|_P `  K
)
64, 5polssatN 33575 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  C_  A )
76adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
(  ._|_  `  X )  C_  A )
8 pexmidALT.p . . . . . 6  |-  .+  =  ( +P `  K
)
94, 8paddssat 33481 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  (  ._|_  `  X )  C_  A )  ->  ( X  .+  (  ._|_  `  X
) )  C_  A
)
102, 3, 7, 9syl3anc 1218 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( X  .+  (  ._|_  `  X ) ) 
C_  A )
11 df-pss 3363 . . . . . . 7  |-  ( ( X  .+  (  ._|_  `  X ) )  C.  A 
<->  ( ( X  .+  (  ._|_  `  X )
)  C_  A  /\  ( X  .+  (  ._|_  `  X ) )  =/= 
A ) )
12 pssnel 3763 . . . . . . 7  |-  ( ( X  .+  (  ._|_  `  X ) )  C.  A  ->  E. p ( p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )
1311, 12sylbir 213 . . . . . 6  |-  ( ( ( X  .+  (  ._|_  `  X ) ) 
C_  A  /\  ( X  .+  (  ._|_  `  X
) )  =/=  A
)  ->  E. p
( p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )
14 df-rex 2740 . . . . . 6  |-  ( E. p  e.  A  -.  p  e.  ( X  .+  (  ._|_  `  X
) )  <->  E. p
( p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )
1513, 14sylibr 212 . . . . 5  |-  ( ( ( X  .+  (  ._|_  `  X ) ) 
C_  A  /\  ( X  .+  (  ._|_  `  X
) )  =/=  A
)  ->  E. p  e.  A  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) )
16 simplll 757 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  K  e.  HL )
17 simpllr 758 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  X  C_  A
)
18 simprl 755 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  p  e.  A
)
19 simplrl 759 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
20 simplrr 760 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  X  =/=  (/) )
21 simprr 756 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) )
22 eqid 2443 . . . . . . . . . 10  |-  ( le
`  K )  =  ( le `  K
)
23 eqid 2443 . . . . . . . . . 10  |-  ( join `  K )  =  (
join `  K )
24 eqid 2443 . . . . . . . . . 10  |-  ( X 
.+  { p }
)  =  ( X 
.+  { p }
)
2522, 23, 4, 8, 5, 24pexmidlem6N 33642 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  =  X )
2622, 23, 4, 8, 5, 24pexmidlem7N 33643 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  =/=  X )
2725, 26jca 532 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
( X  .+  {
p } )  =  X  /\  ( X 
.+  { p }
)  =/=  X ) )
2816, 17, 18, 19, 20, 21, 27syl33anc 1233 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  ( ( X 
.+  { p }
)  =  X  /\  ( X  .+  { p } )  =/=  X
) )
29 nonconne 2630 . . . . . . . 8  |-  -.  (
( X  .+  {
p } )  =  X  /\  ( X 
.+  { p }
)  =/=  X )
3029, 12false 350 . . . . . . 7  |-  ( ( ( X  .+  {
p } )  =  X  /\  ( X 
.+  { p }
)  =/=  X )  <-> 
( X  =  X  /\  X  =/=  X
) )
3128, 30sylib 196 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  C_  A )  /\  (
(  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  /\  (
p  e.  A  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  ( X  =  X  /\  X  =/= 
X ) )
3231rexlimdvaa 2861 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( E. p  e.  A  -.  p  e.  ( X  .+  (  ._|_  `  X ) )  ->  ( X  =  X  /\  X  =/= 
X ) ) )
3315, 32syl5 32 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( ( ( X 
.+  (  ._|_  `  X
) )  C_  A  /\  ( X  .+  (  ._|_  `  X ) )  =/=  A )  -> 
( X  =  X  /\  X  =/=  X
) ) )
3410, 33mpand 675 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( ( X  .+  (  ._|_  `  X )
)  =/=  A  -> 
( X  =  X  /\  X  =/=  X
) ) )
3534necon1bd 2701 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( -.  ( X  =  X  /\  X  =/=  X )  ->  ( X  .+  (  ._|_  `  X
) )  =  A ) )
361, 35mpi 17 1  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/) ) )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2620   E.wrex 2735    C_ wss 3347    C. wpss 3348   (/)c0 3656   {csn 3896   ` cfv 5437  (class class class)co 6110   lecple 14264   joincjn 15133   Atomscatm 32931   HLchlt 33018   +Pcpadd 33462   _|_PcpolN 33569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-riotaBAD 32627
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-iun 4192  df-iin 4193  df-br 4312  df-opab 4370  df-mpt 4371  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6596  df-2nd 6597  df-undef 6811  df-poset 15135  df-plt 15147  df-lub 15163  df-glb 15164  df-join 15165  df-meet 15166  df-p0 15228  df-p1 15229  df-lat 15235  df-clat 15297  df-oposet 32844  df-ol 32846  df-oml 32847  df-covers 32934  df-ats 32935  df-atl 32966  df-cvlat 32990  df-hlat 33019  df-psubsp 33170  df-pmap 33171  df-padd 33463  df-polarityN 33570  df-psubclN 33602
This theorem is referenced by:  pexmidALTN  33645
  Copyright terms: Public domain W3C validator