Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem6N Unicode version

Theorem pexmidlem6N 30457
Description: Lemma for pexmidN 30451. (Contributed by NM, 3-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l  |-  .<_  =  ( le `  K )
pexmidlem.j  |-  .\/  =  ( join `  K )
pexmidlem.a  |-  A  =  ( Atoms `  K )
pexmidlem.p  |-  .+  =  ( + P `  K
)
pexmidlem.o  |-  ._|_  =  ( _|_ P `  K
)
pexmidlem.m  |-  M  =  ( X  .+  {
p } )
Assertion
Ref Expression
pexmidlem6N  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  =  X )

Proof of Theorem pexmidlem6N
StepHypRef Expression
1 pexmidlem.l . . . . . . . 8  |-  .<_  =  ( le `  K )
2 pexmidlem.j . . . . . . . 8  |-  .\/  =  ( join `  K )
3 pexmidlem.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
4 pexmidlem.p . . . . . . . 8  |-  .+  =  ( + P `  K
)
5 pexmidlem.o . . . . . . . 8  |-  ._|_  =  ( _|_ P `  K
)
6 pexmidlem.m . . . . . . . 8  |-  M  =  ( X  .+  {
p } )
71, 2, 3, 4, 5, 6pexmidlem5N 30456 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X
) ) ) )  ->  ( (  ._|_  `  X )  i^i  M
)  =  (/) )
873adantr1 1116 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
(  ._|_  `  X )  i^i  M )  =  (/) )
98fveq2d 5691 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  M
) )  =  ( 
._|_  `  (/) ) )
10 simpl1 960 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  K  e.  HL )
113, 5pol0N 30391 . . . . . 6  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
1210, 11syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  (/) )  =  A )
139, 12eqtrd 2436 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  ( (  ._|_  `  X )  i^i  M
) )  =  A )
1413ineq1d 3501 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
(  ._|_  `  ( (  ._|_  `  X )  i^i 
M ) )  i^i 
M )  =  ( A  i^i  M ) )
15 simpl2 961 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  C_  A )
16 simpl3 962 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  p  e.  A )
1716snssd 3903 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  { p }  C_  A )
183, 4paddssat 30296 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A  /\  {
p }  C_  A
)  ->  ( X  .+  { p } ) 
C_  A )
1910, 15, 17, 18syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  C_  A )
206, 19syl5eqss 3352 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  C_  A )
2110, 15, 203jca 1134 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( K  e.  HL  /\  X  C_  A  /\  M  C_  A ) )
223, 4sspadd1 30297 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  C_  A  /\  {
p }  C_  A
)  ->  X  C_  ( X  .+  { p }
) )
2310, 15, 17, 22syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  C_  ( X  .+  {
p } ) )
2423, 6syl6sseqr 3355 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  C_  M )
25 simpr1 963 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  (  ._|_  `  X
) )  =  X )
26 eqid 2404 . . . . . . . . . . 11  |-  ( PSubCl `  K )  =  (
PSubCl `  K )
273, 5, 26ispsubclN 30419 . . . . . . . . . 10  |-  ( K  e.  HL  ->  ( X  e.  ( PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
2810, 27syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  e.  ( PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
2915, 25, 28mpbir2and 889 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  X  e.  ( PSubCl `  K )
)
303, 4, 26paddatclN 30431 . . . . . . . 8  |-  ( ( K  e.  HL  /\  X  e.  ( PSubCl `  K )  /\  p  e.  A )  ->  ( X  .+  { p }
)  e.  ( PSubCl `  K ) )
3110, 29, 16, 30syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  .+  { p }
)  e.  ( PSubCl `  K ) )
326, 31syl5eqel 2488 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  e.  ( PSubCl `  K )
)
335, 26psubcli2N 30421 . . . . . 6  |-  ( ( K  e.  HL  /\  M  e.  ( PSubCl `  K ) )  -> 
(  ._|_  `  (  ._|_  `  M ) )  =  M )
3410, 32, 33syl2anc 643 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (  ._|_  `  (  ._|_  `  M
) )  =  M )
3524, 34jca 519 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( X  C_  M  /\  (  ._|_  `  (  ._|_  `  M
) )  =  M ) )
363, 5poml4N 30435 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A  /\  M  C_  A )  ->  (
( X  C_  M  /\  (  ._|_  `  (  ._|_  `  M ) )  =  M )  -> 
( (  ._|_  `  (
(  ._|_  `  X )  i^i  M ) )  i^i 
M )  =  ( 
._|_  `  (  ._|_  `  X
) ) ) )
3721, 35, 36sylc 58 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  (
(  ._|_  `  ( (  ._|_  `  X )  i^i 
M ) )  i^i 
M )  =  ( 
._|_  `  (  ._|_  `  X
) ) )
38 sseqin2 3520 . . . 4  |-  ( M 
C_  A  <->  ( A  i^i  M )  =  M )
3920, 38sylib 189 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  ( A  i^i  M )  =  M )
4014, 37, 393eqtr3rd 2445 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  =  (  ._|_  `  (  ._|_  `  X ) ) )
4140, 25eqtrd 2436 1  |-  ( ( ( K  e.  HL  /\  X  C_  A  /\  p  e.  A )  /\  ( (  ._|_  `  (  ._|_  `  X ) )  =  X  /\  X  =/=  (/)  /\  -.  p  e.  ( X  .+  (  ._|_  `  X ) ) ) )  ->  M  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774   ` cfv 5413  (class class class)co 6040   lecple 13491   joincjn 14356   Atomscatm 29746   HLchlt 29833   + Pcpadd 30277   _|_ PcpolN 30384   PSubClcpscN 30416
This theorem is referenced by:  pexmidlem8N  30459
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-polarityN 30385  df-psubclN 30417
  Copyright terms: Public domain W3C validator