Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidN Structured version   Unicode version

Theorem pexmidN 33636
Description: Excluded middle law for closed projective subspaces, which can be shown to be equivalent to (and derivable from) the orthomodular law poml4N 33620. Lemma 3.3(2) in [Holland95] p. 215, which we prove as a special case of osumclN 33634. (Contributed by NM, 25-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmid.a  |-  A  =  ( Atoms `  K )
pexmid.p  |-  .+  =  ( +P `  K
)
pexmid.o  |-  ._|_  =  ( _|_P `  K
)
Assertion
Ref Expression
pexmidN  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )

Proof of Theorem pexmidN
StepHypRef Expression
1 simpll 753 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  K  e.  HL )
2 simplr 754 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  X  C_  A )
3 pexmid.a . . . . . . 7  |-  A  =  ( Atoms `  K )
4 pexmid.o . . . . . . 7  |-  ._|_  =  ( _|_P `  K
)
53, 4polssatN 33575 . . . . . 6  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  C_  A )
65adantr 465 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  X )  C_  A )
7 pexmid.p . . . . . 6  |-  .+  =  ( +P `  K
)
83, 7, 4poldmj1N 33595 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A  /\  (  ._|_  `  X )  C_  A )  ->  (  ._|_  `  ( X  .+  (  ._|_  `  X )
) )  =  ( (  ._|_  `  X )  i^i  (  ._|_  `  (  ._|_  `  X ) ) ) )
91, 2, 6, 8syl3anc 1218 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  ( X  .+  (  ._|_  `  X
) ) )  =  ( (  ._|_  `  X
)  i^i  (  ._|_  `  (  ._|_  `  X ) ) ) )
103, 4pnonsingN 33600 . . . . 5  |-  ( ( K  e.  HL  /\  (  ._|_  `  X )  C_  A )  ->  (
(  ._|_  `  X )  i^i  (  ._|_  `  (  ._|_  `  X ) ) )  =  (/) )
111, 6, 10syl2anc 661 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( (  ._|_  `  X
)  i^i  (  ._|_  `  (  ._|_  `  X ) ) )  =  (/) )
129, 11eqtrd 2475 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  ( X  .+  (  ._|_  `  X
) ) )  =  (/) )
1312fveq2d 5714 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  (  ._|_  `  X ) ) ) )  =  ( 
._|_  `  (/) ) )
14 simpr 461 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (  ._|_  `  X ) )  =  X )
15 eqid 2443 . . . . . . 7  |-  ( PSubCl `  K )  =  (
PSubCl `  K )
163, 4, 15ispsubclN 33604 . . . . . 6  |-  ( K  e.  HL  ->  ( X  e.  ( PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
1716ad2antrr 725 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  e.  (
PSubCl `  K )  <->  ( X  C_  A  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X ) ) )
182, 14, 17mpbir2and 913 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  X  e.  ( PSubCl `  K ) )
193, 4, 15polsubclN 33619 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  e.  ( PSubCl `  K )
)
2019adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  X )  e.  ( PSubCl `  K )
)
213, 42polssN 33582 . . . . 5  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  X  C_  (  ._|_  `  (  ._|_  `  X ) ) )
2221adantr 465 . . . 4  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  ->  X  C_  (  ._|_  `  (  ._|_  `  X ) ) )
237, 4, 15osumclN 33634 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  ( PSubCl `  K )  /\  (  ._|_  `  X )  e.  ( PSubCl `  K )
)  /\  X  C_  (  ._|_  `  (  ._|_  `  X
) ) )  -> 
( X  .+  (  ._|_  `  X ) )  e.  ( PSubCl `  K
) )
241, 18, 20, 22, 23syl31anc 1221 . . 3  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  e.  ( PSubCl `  K
) )
254, 15psubcli2N 33606 . . 3  |-  ( ( K  e.  HL  /\  ( X  .+  (  ._|_  `  X ) )  e.  ( PSubCl `  K )
)  ->  (  ._|_  `  (  ._|_  `  ( X 
.+  (  ._|_  `  X
) ) ) )  =  ( X  .+  (  ._|_  `  X )
) )
261, 24, 25syl2anc 661 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (  ._|_  `  ( X  .+  (  ._|_  `  X ) ) ) )  =  ( X  .+  (  ._|_  `  X ) ) )
273, 4pol0N 33576 . . 3  |-  ( K  e.  HL  ->  (  ._|_  `  (/) )  =  A )
2827ad2antrr 725 . 2  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
(  ._|_  `  (/) )  =  A )
2913, 26, 283eqtr3d 2483 1  |-  ( ( ( K  e.  HL  /\  X  C_  A )  /\  (  ._|_  `  (  ._|_  `  X ) )  =  X )  -> 
( X  .+  (  ._|_  `  X ) )  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    i^i cin 3346    C_ wss 3347   (/)c0 3656   ` cfv 5437  (class class class)co 6110   Atomscatm 32931   HLchlt 33018   +Pcpadd 33462   _|_PcpolN 33569   PSubClcpscN 33601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4422  ax-sep 4432  ax-nul 4440  ax-pow 4489  ax-pr 4550  ax-un 6391  ax-riotaBAD 32627
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2739  df-rex 2740  df-reu 2741  df-rmo 2742  df-rab 2743  df-v 2993  df-sbc 3206  df-csb 3308  df-dif 3350  df-un 3352  df-in 3354  df-ss 3361  df-pss 3363  df-nul 3657  df-if 3811  df-pw 3881  df-sn 3897  df-pr 3899  df-op 3903  df-uni 4111  df-iun 4192  df-iin 4193  df-br 4312  df-opab 4370  df-mpt 4371  df-id 4655  df-xp 4865  df-rel 4866  df-cnv 4867  df-co 4868  df-dm 4869  df-rn 4870  df-res 4871  df-ima 4872  df-iota 5400  df-fun 5439  df-fn 5440  df-f 5441  df-f1 5442  df-fo 5443  df-f1o 5444  df-fv 5445  df-riota 6071  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6596  df-2nd 6597  df-undef 6811  df-poset 15135  df-plt 15147  df-lub 15163  df-glb 15164  df-join 15165  df-meet 15166  df-p0 15228  df-p1 15229  df-lat 15235  df-clat 15297  df-oposet 32844  df-ol 32846  df-oml 32847  df-covers 32934  df-ats 32935  df-atl 32966  df-cvlat 32990  df-hlat 33019  df-psubsp 33170  df-pmap 33171  df-padd 33463  df-polarityN 33570  df-psubclN 33602
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator