MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect Structured version   Unicode version

Theorem perfect 23227
Description: The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer  N is a perfect number (that is, its divisor sum is  2 N) if and only if it is of the form  2 ^ ( p  - 
1 )  x.  (
2 ^ p  - 
1 ), where  2 ^ p  -  1 is prime (a Mersenne prime). (It follows from this that  p is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect  |-  ( ( N  e.  NN  /\  2  ||  N )  -> 
( ( 1  sigma  N )  =  ( 2  x.  N )  <->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
Distinct variable group:    N, p

Proof of Theorem perfect
StepHypRef Expression
1 simplr 754 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  2  ||  N )
2 2prm 14081 . . . . . . . 8  |-  2  e.  Prime
3 simpll 753 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  N  e.  NN )
4 pcelnn 14241 . . . . . . . 8  |-  ( ( 2  e.  Prime  /\  N  e.  NN )  ->  (
( 2  pCnt  N
)  e.  NN  <->  2  ||  N ) )
52, 3, 4sylancr 663 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2  pCnt  N )  e.  NN  <->  2  ||  N
) )
61, 5mpbird 232 . . . . . 6  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  NN )
76nnzd 10954 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  ZZ )
87peano2zd 10958 . . . 4  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2  pCnt  N )  +  1 )  e.  ZZ )
9 pcdvds 14235 . . . . . . . . 9  |-  ( ( 2  e.  Prime  /\  N  e.  NN )  ->  (
2 ^ ( 2 
pCnt  N ) )  ||  N )
102, 3, 9sylancr 663 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  ||  N )
11 2nn 10682 . . . . . . . . . 10  |-  2  e.  NN
126nnnn0d 10841 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  NN0 )
13 nnexpcl 12135 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  ( 2  pCnt  N
)  e.  NN0 )  ->  ( 2 ^ (
2  pCnt  N )
)  e.  NN )
1411, 12, 13sylancr 663 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  e.  NN )
15 nndivdvds 13842 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( 2 ^ (
2  pCnt  N )
)  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
N ) )  ||  N 
<->  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) )  e.  NN ) )
163, 14, 15syl2anc 661 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( 2 
pCnt  N ) )  ||  N 
<->  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) )  e.  NN ) )
1710, 16mpbid 210 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  e.  NN )
18 pcndvds2 14239 . . . . . . . 8  |-  ( ( 2  e.  Prime  /\  N  e.  NN )  ->  -.  2  ||  ( N  / 
( 2 ^ (
2  pCnt  N )
) ) )
192, 3, 18sylancr 663 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  -.  2  ||  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) )
20 simpr 461 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 1 
sigma  N )  =  ( 2  x.  N ) )
21 nncn 10533 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
2221ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  N  e.  CC )
2314nncnd 10541 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  e.  CC )
2414nnne0d 10569 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  =/=  0 )
2522, 23, 24divcan2d 10311 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( 2 
pCnt  N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) )  =  N )
2625oveq2d 6291 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 1 
sigma  ( ( 2 ^ ( 2  pCnt  N
) )  x.  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) ) ) )  =  ( 1 
sigma  N ) )
2725oveq2d 6291 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2  x.  ( ( 2 ^ ( 2  pCnt 
N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) ) )  =  ( 2  x.  N ) )
2820, 26, 273eqtr4d 2511 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 1 
sigma  ( ( 2 ^ ( 2  pCnt  N
) )  x.  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) ) ) )  =  ( 2  x.  ( ( 2 ^ ( 2  pCnt 
N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) ) ) )
296, 17, 19, 28perfectlem2 23226 . . . . . 6  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  e. 
Prime  /\  ( N  / 
( 2 ^ (
2  pCnt  N )
) )  =  ( ( 2 ^ (
( 2  pCnt  N
)  +  1 ) )  -  1 ) ) )
3029simprd 463 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  =  ( ( 2 ^ ( ( 2  pCnt 
N )  +  1 ) )  -  1 ) )
3129simpld 459 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  e. 
Prime )
3230, 31eqeltrrd 2549 . . . 4  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 )  e. 
Prime )
336nncnd 10541 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  CC )
34 ax-1cn 9539 . . . . . . . . 9  |-  1  e.  CC
35 pncan 9815 . . . . . . . . 9  |-  ( ( ( 2  pCnt  N
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 
pCnt  N )  +  1 )  -  1 )  =  ( 2  pCnt 
N ) )
3633, 34, 35sylancl 662 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
( 2  pCnt  N
)  +  1 )  -  1 )  =  ( 2  pCnt  N
) )
3736eqcomd 2468 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  =  ( ( ( 2  pCnt 
N )  +  1 )  -  1 ) )
3837oveq2d 6291 . . . . . 6  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  =  ( 2 ^ (
( ( 2  pCnt 
N )  +  1 )  -  1 ) ) )
3938, 30oveq12d 6293 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( 2 
pCnt  N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) )  =  ( ( 2 ^ ( ( ( 2  pCnt  N
)  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2 
pCnt  N )  +  1 ) )  -  1 ) ) )
4025, 39eqtr3d 2503 . . . 4  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  N  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) )
41 oveq2 6283 . . . . . . . 8  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( 2 ^ p )  =  ( 2 ^ (
( 2  pCnt  N
)  +  1 ) ) )
4241oveq1d 6290 . . . . . . 7  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
2 ^ p )  -  1 )  =  ( ( 2 ^ ( ( 2  pCnt 
N )  +  1 ) )  -  1 ) )
4342eleq1d 2529 . . . . . 6  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
( 2 ^ p
)  -  1 )  e.  Prime  <->  ( ( 2 ^ ( ( 2 
pCnt  N )  +  1 ) )  -  1 )  e.  Prime )
)
44 oveq1 6282 . . . . . . . . 9  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( p  -  1 )  =  ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )
4544oveq2d 6291 . . . . . . . 8  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( 2 ^ ( p  - 
1 ) )  =  ( 2 ^ (
( ( 2  pCnt 
N )  +  1 )  -  1 ) ) )
4645, 42oveq12d 6293 . . . . . . 7  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) )  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) )
4746eqeq2d 2474 . . . . . 6  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  <->  N  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) ) )
4843, 47anbi12d 710 . . . . 5  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
( ( 2 ^ p )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) )  <->  ( (
( 2 ^ (
( 2  pCnt  N
)  +  1 ) )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) ) ) )
4948rspcev 3207 . . . 4  |-  ( ( ( ( 2  pCnt 
N )  +  1 )  e.  ZZ  /\  ( ( ( 2 ^ ( ( 2 
pCnt  N )  +  1 ) )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( ( ( 2  pCnt  N )  +  1 )  - 
1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt 
N )  +  1 ) )  -  1 ) ) ) )  ->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) )
508, 32, 40, 49syl12anc 1221 . . 3  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  E. p  e.  ZZ  ( ( ( 2 ^ p )  -  1 )  e. 
Prime  /\  N  =  ( ( 2 ^ (
p  -  1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) ) )
5150ex 434 . 2  |-  ( ( N  e.  NN  /\  2  ||  N )  -> 
( ( 1  sigma  N )  =  ( 2  x.  N )  ->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
52 perfect1 23224 . . . . . 6  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) )  =  ( ( 2 ^ p )  x.  ( ( 2 ^ p )  -  1 ) ) )
53 2cn 10595 . . . . . . . . 9  |-  2  e.  CC
54 mersenne 23223 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  p  e.  Prime )
55 prmnn 14068 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  NN )
5654, 55syl 16 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  p  e.  NN )
57 expm1t 12149 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  p  e.  NN )  ->  ( 2 ^ p
)  =  ( ( 2 ^ ( p  -  1 ) )  x.  2 ) )
5853, 56, 57sylancr 663 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 2 ^ p
)  =  ( ( 2 ^ ( p  -  1 ) )  x.  2 ) )
59 nnm1nn0 10826 . . . . . . . . . . 11  |-  ( p  e.  NN  ->  (
p  -  1 )  e.  NN0 )
6056, 59syl 16 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( p  -  1 )  e.  NN0 )
61 expcl 12140 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( p  -  1
)  e.  NN0 )  ->  ( 2 ^ (
p  -  1 ) )  e.  CC )
6253, 60, 61sylancr 663 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 2 ^ (
p  -  1 ) )  e.  CC )
63 mulcom 9567 . . . . . . . . 9  |-  ( ( ( 2 ^ (
p  -  1 ) )  e.  CC  /\  2  e.  CC )  ->  ( ( 2 ^ ( p  -  1 ) )  x.  2 )  =  ( 2  x.  ( 2 ^ ( p  -  1 ) ) ) )
6462, 53, 63sylancl 662 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ ( p  -  1 ) )  x.  2 )  =  ( 2  x.  ( 2 ^ ( p  -  1 ) ) ) )
6558, 64eqtrd 2501 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 2 ^ p
)  =  ( 2  x.  ( 2 ^ ( p  -  1 ) ) ) )
6665oveq1d 6290 . . . . . 6  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ p )  x.  (
( 2 ^ p
)  -  1 ) )  =  ( ( 2  x.  ( 2 ^ ( p  - 
1 ) ) )  x.  ( ( 2 ^ p )  - 
1 ) ) )
67 2cnd 10597 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  2  e.  CC )
68 prmnn 14068 . . . . . . . . 9  |-  ( ( ( 2 ^ p
)  -  1 )  e.  Prime  ->  ( ( 2 ^ p )  -  1 )  e.  NN )
6968adantl 466 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ p )  -  1 )  e.  NN )
7069nncnd 10541 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ p )  -  1 )  e.  CC )
7167, 62, 70mulassd 9608 . . . . . 6  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2  x.  ( 2 ^ (
p  -  1 ) ) )  x.  (
( 2 ^ p
)  -  1 ) )  =  ( 2  x.  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) ) )
7252, 66, 713eqtrd 2505 . . . . 5  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) )  =  ( 2  x.  ( ( 2 ^ ( p  -  1 ) )  x.  (
( 2 ^ p
)  -  1 ) ) ) )
73 oveq2 6283 . . . . . 6  |-  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  (
1  sigma  N )  =  ( 1  sigma  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) )
74 oveq2 6283 . . . . . 6  |-  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  (
2  x.  N )  =  ( 2  x.  ( ( 2 ^ ( p  -  1 ) )  x.  (
( 2 ^ p
)  -  1 ) ) ) )
7573, 74eqeq12d 2482 . . . . 5  |-  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  (
( 1  sigma  N )  =  ( 2  x.  N )  <->  ( 1 
sigma  ( ( 2 ^ ( p  -  1 ) )  x.  (
( 2 ^ p
)  -  1 ) ) )  =  ( 2  x.  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
7672, 75syl5ibrcom 222 . . . 4  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( N  =  ( ( 2 ^ (
p  -  1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  ( 1  sigma  N )  =  ( 2  x.  N ) ) )
7776impr 619 . . 3  |-  ( ( p  e.  ZZ  /\  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) )  ->  ( 1 
sigma  N )  =  ( 2  x.  N ) )
7877rexlimiva 2944 . 2  |-  ( E. p  e.  ZZ  (
( ( 2 ^ p )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) )  -> 
( 1  sigma  N )  =  ( 2  x.  N ) )
7951, 78impbid1 203 1  |-  ( ( N  e.  NN  /\  2  ||  N )  -> 
( ( 1  sigma  N )  =  ( 2  x.  N )  <->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   E.wrex 2808   class class class wbr 4440  (class class class)co 6275   CCcc 9479   1c1 9482    + caddc 9484    x. cmul 9486    - cmin 9794    / cdiv 10195   NNcn 10525   2c2 10574   NN0cn0 10784   ZZcz 10853   ^cexp 12122    || cdivides 13836   Primecprime 14065    pCnt cpc 14208    sigma csgm 23090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-supp 6892  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-pm 7413  df-ixp 7460  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-fsupp 7819  df-fi 7860  df-sup 7890  df-oi 7924  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-7 10588  df-8 10589  df-9 10590  df-10 10591  df-n0 10785  df-z 10854  df-dec 10966  df-uz 11072  df-q 11172  df-rp 11210  df-xneg 11307  df-xadd 11308  df-xmul 11309  df-ioo 11522  df-ioc 11523  df-ico 11524  df-icc 11525  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-fac 12309  df-bc 12336  df-hash 12361  df-shft 12850  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-limsup 13243  df-clim 13260  df-rlim 13261  df-sum 13458  df-ef 13654  df-sin 13656  df-cos 13657  df-pi 13659  df-dvds 13837  df-gcd 13993  df-prm 14066  df-pc 14209  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-starv 14559  df-sca 14560  df-vsca 14561  df-ip 14562  df-tset 14563  df-ple 14564  df-ds 14566  df-unif 14567  df-hom 14568  df-cco 14569  df-rest 14667  df-topn 14668  df-0g 14686  df-gsum 14687  df-topgen 14688  df-pt 14689  df-prds 14692  df-xrs 14746  df-qtop 14751  df-imas 14752  df-xps 14754  df-mre 14830  df-mrc 14831  df-acs 14833  df-mnd 15721  df-submnd 15771  df-mulg 15854  df-cntz 16143  df-cmn 16589  df-psmet 18175  df-xmet 18176  df-met 18177  df-bl 18178  df-mopn 18179  df-fbas 18180  df-fg 18181  df-cnfld 18185  df-top 19159  df-bases 19161  df-topon 19162  df-topsp 19163  df-cld 19279  df-ntr 19280  df-cls 19281  df-nei 19358  df-lp 19396  df-perf 19397  df-cn 19487  df-cnp 19488  df-haus 19575  df-tx 19791  df-hmeo 19984  df-fil 20075  df-fm 20167  df-flim 20168  df-flf 20169  df-xms 20551  df-ms 20552  df-tms 20553  df-cncf 21110  df-limc 21998  df-dv 21999  df-log 22665  df-cxp 22666  df-sgm 23096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator