MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perfect Structured version   Visualization version   Unicode version

Theorem perfect 24171
Description: The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer  N is a perfect number (that is, its divisor sum is  2 N) if and only if it is of the form  2 ^ ( p  - 
1 )  x.  (
2 ^ p  - 
1 ), where  2 ^ p  -  1 is prime (a Mersenne prime). (It follows from this that  p is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
perfect  |-  ( ( N  e.  NN  /\  2  ||  N )  -> 
( ( 1  sigma  N )  =  ( 2  x.  N )  <->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
Distinct variable group:    N, p

Proof of Theorem perfect
StepHypRef Expression
1 simplr 763 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  2  ||  N )
2 2prm 14652 . . . . . . . 8  |-  2  e.  Prime
3 simpll 761 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  N  e.  NN )
4 pcelnn 14831 . . . . . . . 8  |-  ( ( 2  e.  Prime  /\  N  e.  NN )  ->  (
( 2  pCnt  N
)  e.  NN  <->  2  ||  N ) )
52, 3, 4sylancr 670 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2  pCnt  N )  e.  NN  <->  2  ||  N
) )
61, 5mpbird 236 . . . . . 6  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  NN )
76nnzd 11046 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  ZZ )
87peano2zd 11050 . . . 4  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2  pCnt  N )  +  1 )  e.  ZZ )
9 pcdvds 14825 . . . . . . . . 9  |-  ( ( 2  e.  Prime  /\  N  e.  NN )  ->  (
2 ^ ( 2 
pCnt  N ) )  ||  N )
102, 3, 9sylancr 670 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  ||  N )
11 2nn 10774 . . . . . . . . . 10  |-  2  e.  NN
126nnnn0d 10932 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  NN0 )
13 nnexpcl 12292 . . . . . . . . . 10  |-  ( ( 2  e.  NN  /\  ( 2  pCnt  N
)  e.  NN0 )  ->  ( 2 ^ (
2  pCnt  N )
)  e.  NN )
1411, 12, 13sylancr 670 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  e.  NN )
15 nndivdvds 14323 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( 2 ^ (
2  pCnt  N )
)  e.  NN )  ->  ( ( 2 ^ ( 2  pCnt 
N ) )  ||  N 
<->  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) )  e.  NN ) )
163, 14, 15syl2anc 667 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( 2 
pCnt  N ) )  ||  N 
<->  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) )  e.  NN ) )
1710, 16mpbid 214 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  e.  NN )
18 pcndvds2 14829 . . . . . . . 8  |-  ( ( 2  e.  Prime  /\  N  e.  NN )  ->  -.  2  ||  ( N  / 
( 2 ^ (
2  pCnt  N )
) ) )
192, 3, 18sylancr 670 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  -.  2  ||  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) )
20 simpr 463 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 1 
sigma  N )  =  ( 2  x.  N ) )
21 nncn 10624 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  CC )
2221ad2antrr 733 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  N  e.  CC )
2314nncnd 10632 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  e.  CC )
2414nnne0d 10661 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  =/=  0 )
2522, 23, 24divcan2d 10392 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( 2 
pCnt  N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) )  =  N )
2625oveq2d 6311 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 1 
sigma  ( ( 2 ^ ( 2  pCnt  N
) )  x.  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) ) ) )  =  ( 1 
sigma  N ) )
2725oveq2d 6311 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2  x.  ( ( 2 ^ ( 2  pCnt 
N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) ) )  =  ( 2  x.  N ) )
2820, 26, 273eqtr4d 2497 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 1 
sigma  ( ( 2 ^ ( 2  pCnt  N
) )  x.  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) ) ) )  =  ( 2  x.  ( ( 2 ^ ( 2  pCnt 
N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) ) ) )
296, 17, 19, 28perfectlem2 24170 . . . . . 6  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  e. 
Prime  /\  ( N  / 
( 2 ^ (
2  pCnt  N )
) )  =  ( ( 2 ^ (
( 2  pCnt  N
)  +  1 ) )  -  1 ) ) )
3029simprd 465 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  =  ( ( 2 ^ ( ( 2  pCnt 
N )  +  1 ) )  -  1 ) )
3129simpld 461 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( N  /  ( 2 ^ ( 2  pCnt  N
) ) )  e. 
Prime )
3230, 31eqeltrrd 2532 . . . 4  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 )  e. 
Prime )
336nncnd 10632 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  e.  CC )
34 ax-1cn 9602 . . . . . . . . 9  |-  1  e.  CC
35 pncan 9886 . . . . . . . . 9  |-  ( ( ( 2  pCnt  N
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2 
pCnt  N )  +  1 )  -  1 )  =  ( 2  pCnt 
N ) )
3633, 34, 35sylancl 669 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
( 2  pCnt  N
)  +  1 )  -  1 )  =  ( 2  pCnt  N
) )
3736eqcomd 2459 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 
pCnt  N )  =  ( ( ( 2  pCnt 
N )  +  1 )  -  1 ) )
3837oveq2d 6311 . . . . . 6  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( 2 ^ ( 2  pCnt 
N ) )  =  ( 2 ^ (
( ( 2  pCnt 
N )  +  1 )  -  1 ) ) )
3938, 30oveq12d 6313 . . . . 5  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  ( (
2 ^ ( 2 
pCnt  N ) )  x.  ( N  /  (
2 ^ ( 2 
pCnt  N ) ) ) )  =  ( ( 2 ^ ( ( ( 2  pCnt  N
)  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2 
pCnt  N )  +  1 ) )  -  1 ) ) )
4025, 39eqtr3d 2489 . . . 4  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  N  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) )
41 oveq2 6303 . . . . . . . 8  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( 2 ^ p )  =  ( 2 ^ (
( 2  pCnt  N
)  +  1 ) ) )
4241oveq1d 6310 . . . . . . 7  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
2 ^ p )  -  1 )  =  ( ( 2 ^ ( ( 2  pCnt 
N )  +  1 ) )  -  1 ) )
4342eleq1d 2515 . . . . . 6  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
( 2 ^ p
)  -  1 )  e.  Prime  <->  ( ( 2 ^ ( ( 2 
pCnt  N )  +  1 ) )  -  1 )  e.  Prime )
)
44 oveq1 6302 . . . . . . . . 9  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( p  -  1 )  =  ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )
4544oveq2d 6311 . . . . . . . 8  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( 2 ^ ( p  - 
1 ) )  =  ( 2 ^ (
( ( 2  pCnt 
N )  +  1 )  -  1 ) ) )
4645, 42oveq12d 6313 . . . . . . 7  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) )  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) )
4746eqeq2d 2463 . . . . . 6  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  <->  N  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) ) )
4843, 47anbi12d 718 . . . . 5  |-  ( p  =  ( ( 2 
pCnt  N )  +  1 )  ->  ( (
( ( 2 ^ p )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) )  <->  ( (
( 2 ^ (
( 2  pCnt  N
)  +  1 ) )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( ( ( 2 
pCnt  N )  +  1 )  -  1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt  N )  +  1 ) )  -  1 ) ) ) ) )
4948rspcev 3152 . . . 4  |-  ( ( ( ( 2  pCnt 
N )  +  1 )  e.  ZZ  /\  ( ( ( 2 ^ ( ( 2 
pCnt  N )  +  1 ) )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( ( ( 2  pCnt  N )  +  1 )  - 
1 ) )  x.  ( ( 2 ^ ( ( 2  pCnt 
N )  +  1 ) )  -  1 ) ) ) )  ->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) )
508, 32, 40, 49syl12anc 1267 . . 3  |-  ( ( ( N  e.  NN  /\  2  ||  N )  /\  ( 1  sigma  N )  =  ( 2  x.  N ) )  ->  E. p  e.  ZZ  ( ( ( 2 ^ p )  -  1 )  e. 
Prime  /\  N  =  ( ( 2 ^ (
p  -  1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) ) )
5150ex 436 . 2  |-  ( ( N  e.  NN  /\  2  ||  N )  -> 
( ( 1  sigma  N )  =  ( 2  x.  N )  ->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
52 perfect1 24168 . . . . . 6  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) )  =  ( ( 2 ^ p )  x.  ( ( 2 ^ p )  -  1 ) ) )
53 2cn 10687 . . . . . . . . 9  |-  2  e.  CC
54 mersenne 24167 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  p  e.  Prime )
55 prmnn 14637 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  NN )
5654, 55syl 17 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  p  e.  NN )
57 expm1t 12307 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  p  e.  NN )  ->  ( 2 ^ p
)  =  ( ( 2 ^ ( p  -  1 ) )  x.  2 ) )
5853, 56, 57sylancr 670 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 2 ^ p
)  =  ( ( 2 ^ ( p  -  1 ) )  x.  2 ) )
59 nnm1nn0 10918 . . . . . . . . . . 11  |-  ( p  e.  NN  ->  (
p  -  1 )  e.  NN0 )
6056, 59syl 17 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( p  -  1 )  e.  NN0 )
61 expcl 12297 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( p  -  1
)  e.  NN0 )  ->  ( 2 ^ (
p  -  1 ) )  e.  CC )
6253, 60, 61sylancr 670 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 2 ^ (
p  -  1 ) )  e.  CC )
63 mulcom 9630 . . . . . . . . 9  |-  ( ( ( 2 ^ (
p  -  1 ) )  e.  CC  /\  2  e.  CC )  ->  ( ( 2 ^ ( p  -  1 ) )  x.  2 )  =  ( 2  x.  ( 2 ^ ( p  -  1 ) ) ) )
6462, 53, 63sylancl 669 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ ( p  -  1 ) )  x.  2 )  =  ( 2  x.  ( 2 ^ ( p  -  1 ) ) ) )
6558, 64eqtrd 2487 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 2 ^ p
)  =  ( 2  x.  ( 2 ^ ( p  -  1 ) ) ) )
6665oveq1d 6310 . . . . . 6  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ p )  x.  (
( 2 ^ p
)  -  1 ) )  =  ( ( 2  x.  ( 2 ^ ( p  - 
1 ) ) )  x.  ( ( 2 ^ p )  - 
1 ) ) )
67 2cnd 10689 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  2  e.  CC )
68 prmnn 14637 . . . . . . . . 9  |-  ( ( ( 2 ^ p
)  -  1 )  e.  Prime  ->  ( ( 2 ^ p )  -  1 )  e.  NN )
6968adantl 468 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ p )  -  1 )  e.  NN )
7069nncnd 10632 . . . . . . 7  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2 ^ p )  -  1 )  e.  CC )
7167, 62, 70mulassd 9671 . . . . . 6  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( ( 2  x.  ( 2 ^ (
p  -  1 ) ) )  x.  (
( 2 ^ p
)  -  1 ) )  =  ( 2  x.  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) ) )
7252, 66, 713eqtrd 2491 . . . . 5  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( 1  sigma  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) )  =  ( 2  x.  ( ( 2 ^ ( p  -  1 ) )  x.  (
( 2 ^ p
)  -  1 ) ) ) )
73 oveq2 6303 . . . . . 6  |-  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  (
1  sigma  N )  =  ( 1  sigma  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) )
74 oveq2 6303 . . . . . 6  |-  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  (
2  x.  N )  =  ( 2  x.  ( ( 2 ^ ( p  -  1 ) )  x.  (
( 2 ^ p
)  -  1 ) ) ) )
7573, 74eqeq12d 2468 . . . . 5  |-  ( N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  (
( 1  sigma  N )  =  ( 2  x.  N )  <->  ( 1 
sigma  ( ( 2 ^ ( p  -  1 ) )  x.  (
( 2 ^ p
)  -  1 ) ) )  =  ( 2  x.  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
7672, 75syl5ibrcom 226 . . . 4  |-  ( ( p  e.  ZZ  /\  ( ( 2 ^ p )  -  1 )  e.  Prime )  ->  ( N  =  ( ( 2 ^ (
p  -  1 ) )  x.  ( ( 2 ^ p )  -  1 ) )  ->  ( 1  sigma  N )  =  ( 2  x.  N ) ) )
7776impr 625 . . 3  |-  ( ( p  e.  ZZ  /\  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) )  ->  ( 1 
sigma  N )  =  ( 2  x.  N ) )
7877rexlimiva 2877 . 2  |-  ( E. p  e.  ZZ  (
( ( 2 ^ p )  -  1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  - 
1 ) )  x.  ( ( 2 ^ p )  -  1 ) ) )  -> 
( 1  sigma  N )  =  ( 2  x.  N ) )
7951, 78impbid1 207 1  |-  ( ( N  e.  NN  /\  2  ||  N )  -> 
( ( 1  sigma  N )  =  ( 2  x.  N )  <->  E. p  e.  ZZ  ( ( ( 2 ^ p )  - 
1 )  e.  Prime  /\  N  =  ( ( 2 ^ ( p  -  1 ) )  x.  ( ( 2 ^ p )  - 
1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1446    e. wcel 1889   E.wrex 2740   class class class wbr 4405  (class class class)co 6295   CCcc 9542   1c1 9545    + caddc 9547    x. cmul 9549    - cmin 9865    / cdiv 10276   NNcn 10616   2c2 10666   NN0cn0 10876   ZZcz 10944   ^cexp 12279    || cdvds 14317   Primecprime 14634    pCnt cpc 14798    sigma csgm 24034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622  ax-addf 9623  ax-mulf 9624
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-fal 1452  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-iin 4284  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-se 4797  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-isom 5594  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6920  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-2o 7188  df-oadd 7191  df-er 7368  df-map 7479  df-pm 7480  df-ixp 7528  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7889  df-fi 7930  df-sup 7961  df-inf 7962  df-oi 8030  df-card 8378  df-cda 8603  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-xneg 11416  df-xadd 11417  df-xmul 11418  df-ioo 11646  df-ioc 11647  df-ico 11648  df-icc 11649  df-fz 11792  df-fzo 11923  df-fl 12035  df-mod 12104  df-seq 12221  df-exp 12280  df-fac 12467  df-bc 12495  df-hash 12523  df-shft 13142  df-cj 13174  df-re 13175  df-im 13176  df-sqrt 13310  df-abs 13311  df-limsup 13538  df-clim 13564  df-rlim 13565  df-sum 13765  df-ef 14133  df-sin 14135  df-cos 14136  df-pi 14138  df-dvds 14318  df-gcd 14481  df-prm 14635  df-pc 14799  df-struct 15135  df-ndx 15136  df-slot 15137  df-base 15138  df-sets 15139  df-ress 15140  df-plusg 15215  df-mulr 15216  df-starv 15217  df-sca 15218  df-vsca 15219  df-ip 15220  df-tset 15221  df-ple 15222  df-ds 15224  df-unif 15225  df-hom 15226  df-cco 15227  df-rest 15333  df-topn 15334  df-0g 15352  df-gsum 15353  df-topgen 15354  df-pt 15355  df-prds 15358  df-xrs 15412  df-qtop 15418  df-imas 15419  df-xps 15422  df-mre 15504  df-mrc 15505  df-acs 15507  df-mgm 16500  df-sgrp 16539  df-mnd 16549  df-submnd 16595  df-mulg 16688  df-cntz 16983  df-cmn 17444  df-psmet 18974  df-xmet 18975  df-met 18976  df-bl 18977  df-mopn 18978  df-fbas 18979  df-fg 18980  df-cnfld 18983  df-top 19933  df-bases 19934  df-topon 19935  df-topsp 19936  df-cld 20046  df-ntr 20047  df-cls 20048  df-nei 20126  df-lp 20164  df-perf 20165  df-cn 20255  df-cnp 20256  df-haus 20343  df-tx 20589  df-hmeo 20782  df-fil 20873  df-fm 20965  df-flim 20966  df-flf 20967  df-xms 21347  df-ms 21348  df-tms 21349  df-cncf 21922  df-limc 22833  df-dv 22834  df-log 23518  df-cxp 23519  df-sgm 24040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator