Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundex Structured version   Unicode version

Theorem pellfundex 29253
Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.

Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 29243. (Contributed by Stefan O'Rear, 18-Sep-2014.)

Assertion
Ref Expression
pellfundex  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
)

Proof of Theorem pellfundex
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 10412 . . . 4  |-  2  e.  RR
2 pellfundre 29248 . . . 4  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  RR )
3 remulcl 9388 . . . 4  |-  ( ( 2  e.  RR  /\  (PellFund `  D )  e.  RR )  ->  (
2  x.  (PellFund `  D
) )  e.  RR )
41, 2, 3sylancr 663 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( 2  x.  (PellFund `  D ) )  e.  RR )
5 0re 9407 . . . . . . . 8  |-  0  e.  RR
65a1i 11 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
0  e.  RR )
7 1re 9406 . . . . . . . 8  |-  1  e.  RR
87a1i 11 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
1  e.  RR )
9 0lt1 9883 . . . . . . . 8  |-  0  <  1
109a1i 11 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
0  <  1 )
11 pellfundgt1 29250 . . . . . . 7  |-  ( D  e.  ( NN  \NN )  -> 
1  <  (PellFund `  D
) )
126, 8, 2, 10, 11lttrd 9553 . . . . . 6  |-  ( D  e.  ( NN  \NN )  -> 
0  <  (PellFund `  D
) )
132, 12elrpd 11046 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  RR+ )
142, 13ltaddrpd 11077 . . . 4  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  < 
( (PellFund `  D )  +  (PellFund `  D )
) )
152recnd 9433 . . . . 5  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  CC )
16152timesd 10588 . . . 4  |-  ( D  e.  ( NN  \NN )  -> 
( 2  x.  (PellFund `  D ) )  =  ( (PellFund `  D
)  +  (PellFund `  D
) ) )
1714, 16breqtrrd 4339 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  < 
( 2  x.  (PellFund `  D ) ) )
18 pellfundglb 29252 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  ( 2  x.  (PellFund `  D )
)  e.  RR  /\  (PellFund `  D )  < 
( 2  x.  (PellFund `  D ) ) )  ->  E. a  e.  (Pell1QR `  D ) ( (PellFund `  D )  <_  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )
194, 17, 18mpd3an23 1316 . 2  |-  ( D  e.  ( NN  \NN )  ->  E. a  e.  (Pell1QR `  D ) ( (PellFund `  D )  <_  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )
202adantr 465 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
(PellFund `  D )  e.  RR )
21 pell1qrss14 29235 . . . . . . . 8  |-  ( D  e.  ( NN  \NN )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
2221sselda 3377 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
a  e.  (Pell14QR `  D
) )
23 pell14qrre 29224 . . . . . . 7  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell14QR `  D ) )  -> 
a  e.  RR )
2422, 23syldan 470 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
a  e.  RR )
2520, 24leloed 9538 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( (PellFund `  D )  <_  a  <->  ( (PellFund `  D
)  <  a  \/  (PellFund `  D )  =  a ) ) )
26 simpll 753 . . . . . . . . 9  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  D  e.  ( NN  \NN ) )
2724adantr 465 . . . . . . . . 9  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  a  e.  RR )
28 simprl 755 . . . . . . . . 9  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  (PellFund `  D )  <  a )
29 pellfundglb 29252 . . . . . . . . 9  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  RR  /\  (PellFund `  D )  <  a )  ->  E. b  e.  (Pell1QR `  D )
( (PellFund `  D )  <_  b  /\  b  < 
a ) )
3026, 27, 28, 29syl3anc 1218 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  E. b  e.  (Pell1QR `  D ) ( (PellFund `  D )  <_  b  /\  b  <  a ) )
31 simp-4l 765 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  ->  D  e.  ( NN  \NN )
)
32 simp-4r 766 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
a  e.  (Pell1QR `  D
) )
33 simplr 754 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
b  e.  (Pell1QR `  D
) )
34 simprr 756 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
b  <  a )
3524ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
a  e.  RR )
364adantr 465 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( 2  x.  (PellFund `  D ) )  e.  RR )
3736ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
( 2  x.  (PellFund `  D ) )  e.  RR )
3821adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
3938ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
(Pell1QR `  D )  C_  (Pell14QR `  D ) )
4039, 33sseldd 3378 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
b  e.  (Pell14QR `  D
) )
41 pell14qrre 29224 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  b  e.  (Pell14QR `  D ) )  -> 
b  e.  RR )
4231, 40, 41syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
b  e.  RR )
43 remulcl 9388 . . . . . . . . . . . . 13  |-  ( ( 2  e.  RR  /\  b  e.  RR )  ->  ( 2  x.  b
)  e.  RR )
441, 42, 43sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
( 2  x.  b
)  e.  RR )
45 simprr 756 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  a  <  (
2  x.  (PellFund `  D
) ) )
4645ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
a  <  ( 2  x.  (PellFund `  D
) ) )
47 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
(PellFund `  D )  <_ 
b )
4820ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
(PellFund `  D )  e.  RR )
491a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
2  e.  RR )
50 2pos 10434 . . . . . . . . . . . . . . 15  |-  0  <  2
5150a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
0  <  2 )
52 lemul2 10203 . . . . . . . . . . . . . 14  |-  ( ( (PellFund `  D )  e.  RR  /\  b  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
( (PellFund `  D )  <_  b  <->  ( 2  x.  (PellFund `  D )
)  <_  ( 2  x.  b ) ) )
5348, 42, 49, 51, 52syl112anc 1222 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
( (PellFund `  D )  <_  b  <->  ( 2  x.  (PellFund `  D )
)  <_  ( 2  x.  b ) ) )
5447, 53mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
( 2  x.  (PellFund `  D ) )  <_ 
( 2  x.  b
) )
5535, 37, 44, 46, 54ltletrd 9552 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
a  <  ( 2  x.  b ) )
56 simp1 988 . . . . . . . . . . . 12  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  D  e.  ( NN  \NN ) )
57213ad2ant1 1009 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  (Pell1QR `  D
)  C_  (Pell14QR `  D
) )
58 simp2l 1014 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  a  e.  (Pell1QR `  D ) )
5957, 58sseldd 3378 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  a  e.  (Pell14QR `  D ) )
60 simp2r 1015 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  e.  (Pell1QR `  D ) )
6157, 60sseldd 3378 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  e.  (Pell14QR `  D ) )
62 pell14qrdivcl 29232 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell14QR `  D )  /\  b  e.  (Pell14QR `  D )
)  ->  ( a  /  b )  e.  (Pell14QR `  D )
)
6356, 59, 61, 62syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( a  /  b )  e.  (Pell14QR `  D )
)
6456, 61, 41syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  e.  RR )
6564recnd 9433 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  e.  CC )
6665mulid2d 9425 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( 1  x.  b )  =  b )
67 simp3l 1016 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  b  <  a )
6866, 67eqbrtrd 4333 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( 1  x.  b )  < 
a )
697a1i 11 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  1  e.  RR )
7056, 59, 23syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  a  e.  RR )
71 pell14qrgt0 29226 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( NN 
\NN )  /\  b  e.  (Pell14QR `  D ) )  -> 
0  <  b )
7256, 61, 71syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  0  <  b )
73 ltmuldiv 10223 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  a  e.  RR  /\  (
b  e.  RR  /\  0  <  b ) )  ->  ( ( 1  x.  b )  < 
a  <->  1  <  (
a  /  b ) ) )
7469, 70, 64, 72, 73syl112anc 1222 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( (
1  x.  b )  <  a  <->  1  <  ( a  /  b ) ) )
7568, 74mpbid 210 . . . . . . . . . . . 12  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  1  <  ( a  /  b ) )
76 simp3r 1017 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  a  <  ( 2  x.  b ) )
771a1i 11 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  2  e.  RR )
78 ltdivmul2 10228 . . . . . . . . . . . . . 14  |-  ( ( a  e.  RR  /\  2  e.  RR  /\  (
b  e.  RR  /\  0  <  b ) )  ->  ( ( a  /  b )  <  2  <->  a  <  (
2  x.  b ) ) )
7970, 77, 64, 72, 78syl112anc 1222 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( (
a  /  b )  <  2  <->  a  <  ( 2  x.  b ) ) )
8076, 79mpbird 232 . . . . . . . . . . . 12  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  ( a  /  b )  <  2 )
81 simprr 756 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  ( a  / 
b )  <  2
)
82 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  D  e.  ( NN  \NN ) )
83 simplr 754 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  ( a  / 
b )  e.  (Pell14QR `  D ) )
84 simprl 755 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  1  <  (
a  /  b ) )
85 pell14qrgapw 29243 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  / 
b )  e.  (Pell14QR `  D )  /\  1  <  ( a  /  b
) )  ->  2  <  ( a  /  b
) )
8682, 83, 84, 85syl3anc 1218 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  2  <  (
a  /  b ) )
87 pell14qrre 29224 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  / 
b )  e.  (Pell14QR `  D ) )  -> 
( a  /  b
)  e.  RR )
8887adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  ( a  / 
b )  e.  RR )
89 ltnsym 9494 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  RR  /\  ( a  /  b
)  e.  RR )  ->  ( 2  < 
( a  /  b
)  ->  -.  (
a  /  b )  <  2 ) )
901, 88, 89sylancr 663 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  ( 2  < 
( a  /  b
)  ->  -.  (
a  /  b )  <  2 ) )
9186, 90mpd 15 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  -.  ( a  /  b )  <  2 )
9281, 91pm2.21dd 174 . . . . . . . . . . . 12  |-  ( ( ( D  e.  ( NN  \NN )  /\  ( a  /  b )  e.  (Pell14QR `  D )
)  /\  ( 1  <  ( a  / 
b )  /\  (
a  /  b )  <  2 ) )  ->  (PellFund `  D )  e.  (Pell1QR `  D )
)
9356, 63, 75, 80, 92syl22anc 1219 . . . . . . . . . . 11  |-  ( ( D  e.  ( NN 
\NN )  /\  ( a  e.  (Pell1QR `  D )  /\  b  e.  (Pell1QR `  D ) )  /\  ( b  <  a  /\  a  <  ( 2  x.  b ) ) )  ->  (PellFund `  D
)  e.  (Pell1QR `  D
) )
9431, 32, 33, 34, 55, 93syl122anc 1227 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D
) )  /\  (
(PellFund `  D )  < 
a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  /\  ( (PellFund `  D )  <_  b  /\  b  < 
a ) )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
)
9594ex 434 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  /\  b  e.  (Pell1QR `  D ) )  -> 
( ( (PellFund `  D
)  <_  b  /\  b  <  a )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
) )
9695rexlimdva 2862 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  ( E. b  e.  (Pell1QR `  D )
( (PellFund `  D )  <_  b  /\  b  < 
a )  ->  (PellFund `  D )  e.  (Pell1QR `  D ) ) )
9730, 96mpd 15 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  ( (PellFund `  D )  <  a  /\  a  <  ( 2  x.  (PellFund `  D
) ) ) )  ->  (PellFund `  D )  e.  (Pell1QR `  D )
)
9897exp32 605 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( (PellFund `  D )  <  a  ->  ( a  <  ( 2  x.  (PellFund `  D ) )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
) ) )
99 simp2 989 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  (PellFund `  D
)  =  a  /\  a  <  ( 2  x.  (PellFund `  D )
) )  ->  (PellFund `  D )  =  a )
100 simp1r 1013 . . . . . . . 8  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  (PellFund `  D
)  =  a  /\  a  <  ( 2  x.  (PellFund `  D )
) )  ->  a  e.  (Pell1QR `  D )
)
10199, 100eqeltrd 2517 . . . . . . 7  |-  ( ( ( D  e.  ( NN  \NN )  /\  a  e.  (Pell1QR `  D )
)  /\  (PellFund `  D
)  =  a  /\  a  <  ( 2  x.  (PellFund `  D )
) )  ->  (PellFund `  D )  e.  (Pell1QR `  D ) )
1021013exp 1186 . . . . . 6  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( (PellFund `  D )  =  a  ->  ( a  <  ( 2  x.  (PellFund `  D )
)  ->  (PellFund `  D
)  e.  (Pell1QR `  D
) ) ) )
10398, 102jaod 380 . . . . 5  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( ( (PellFund `  D
)  <  a  \/  (PellFund `  D )  =  a )  ->  (
a  <  ( 2  x.  (PellFund `  D
) )  ->  (PellFund `  D )  e.  (Pell1QR `  D ) ) ) )
10425, 103sylbid 215 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( (PellFund `  D )  <_  a  ->  ( a  <  ( 2  x.  (PellFund `  D ) )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
) ) )
105104impd 431 . . 3  |-  ( ( D  e.  ( NN 
\NN )  /\  a  e.  (Pell1QR `  D ) )  -> 
( ( (PellFund `  D
)  <_  a  /\  a  <  ( 2  x.  (PellFund `  D )
) )  ->  (PellFund `  D )  e.  (Pell1QR `  D ) ) )
106105rexlimdva 2862 . 2  |-  ( D  e.  ( NN  \NN )  -> 
( E. a  e.  (Pell1QR `  D )
( (PellFund `  D )  <_  a  /\  a  < 
( 2  x.  (PellFund `  D ) ) )  ->  (PellFund `  D )  e.  (Pell1QR `  D )
) )
10719, 106mpd 15 1  |-  ( D  e.  ( NN  \NN )  -> 
(PellFund `  D )  e.  (Pell1QR `  D )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   E.wrex 2737    \ cdif 3346    C_ wss 3349   class class class wbr 4313   ` cfv 5439  (class class class)co 6112   RRcr 9302   0cc0 9303   1c1 9304    + caddc 9306    x. cmul 9308    < clt 9439    <_ cle 9440    / cdiv 10014   NNcn 10343   2c2 10392  ◻NNcsquarenn 29203  Pell1QRcpell1qr 29204  Pell14QRcpell14qr 29206  PellFundcpellfund 29207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-omul 6946  df-er 7122  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-oi 7745  df-card 8130  df-acn 8133  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-n0 10601  df-z 10668  df-uz 10883  df-q 10975  df-rp 11013  df-ico 11327  df-fz 11459  df-fl 11663  df-mod 11730  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-dvds 13557  df-gcd 13712  df-numer 13834  df-denom 13835  df-squarenn 29208  df-pell1qr 29209  df-pell14qr 29210  df-pell1234qr 29211  df-pellfund 29212
This theorem is referenced by:  pellfund14  29265  pellfund14b  29266
  Copyright terms: Public domain W3C validator