Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem5 Structured version   Unicode version

Theorem pellexlem5 35641
Description: Lemma for pellex 35643. Invoking fiphp3d 35625, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellexlem5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  ZZ  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) )
Distinct variable group:    x, D, y, z

Proof of Theorem pellexlem5
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellexlem4 35640 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  ~~  NN )
2 fzfi 12186 . . . 4  |-  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  e.  Fin
3 diffi 7807 . . . 4  |-  ( (
-u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  e. 
Fin  ->  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  e. 
Fin )
42, 3mp1i 13 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  e. 
Fin )
5 elopab 4726 . . . . 5  |-  ( a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  <->  E. y E. z ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )
6 fveq2 5879 . . . . . . . . . . . 12  |-  ( a  =  <. y ,  z
>.  ->  ( 1st `  a
)  =  ( 1st `  <. y ,  z
>. ) )
76oveq1d 6318 . . . . . . . . . . 11  |-  ( a  =  <. y ,  z
>.  ->  ( ( 1st `  a ) ^ 2 )  =  ( ( 1st `  <. y ,  z >. ) ^ 2 ) )
8 fveq2 5879 . . . . . . . . . . . . 13  |-  ( a  =  <. y ,  z
>.  ->  ( 2nd `  a
)  =  ( 2nd `  <. y ,  z
>. ) )
98oveq1d 6318 . . . . . . . . . . . 12  |-  ( a  =  <. y ,  z
>.  ->  ( ( 2nd `  a ) ^ 2 )  =  ( ( 2nd `  <. y ,  z >. ) ^ 2 ) )
109oveq2d 6319 . . . . . . . . . . 11  |-  ( a  =  <. y ,  z
>.  ->  ( D  x.  ( ( 2nd `  a
) ^ 2 ) )  =  ( D  x.  ( ( 2nd `  <. y ,  z
>. ) ^ 2 ) ) )
117, 10oveq12d 6321 . . . . . . . . . 10  |-  ( a  =  <. y ,  z
>.  ->  ( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  (
( 2nd `  a
) ^ 2 ) ) )  =  ( ( ( 1st `  <. y ,  z >. ) ^ 2 )  -  ( D  x.  (
( 2nd `  <. y ,  z >. ) ^ 2 ) ) ) )
12 vex 3085 . . . . . . . . . . . . 13  |-  y  e. 
_V
13 vex 3085 . . . . . . . . . . . . 13  |-  z  e. 
_V
1412, 13op1st 6813 . . . . . . . . . . . 12  |-  ( 1st `  <. y ,  z
>. )  =  y
1514oveq1i 6313 . . . . . . . . . . 11  |-  ( ( 1st `  <. y ,  z >. ) ^ 2 )  =  ( y ^ 2 )
1612, 13op2nd 6814 . . . . . . . . . . . . 13  |-  ( 2nd `  <. y ,  z
>. )  =  z
1716oveq1i 6313 . . . . . . . . . . . 12  |-  ( ( 2nd `  <. y ,  z >. ) ^ 2 )  =  ( z ^ 2 )
1817oveq2i 6314 . . . . . . . . . . 11  |-  ( D  x.  ( ( 2nd `  <. y ,  z
>. ) ^ 2 ) )  =  ( D  x.  ( z ^
2 ) )
1915, 18oveq12i 6315 . . . . . . . . . 10  |-  ( ( ( 1st `  <. y ,  z >. ) ^ 2 )  -  ( D  x.  (
( 2nd `  <. y ,  z >. ) ^ 2 ) ) )  =  ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )
2011, 19syl6eq 2480 . . . . . . . . 9  |-  ( a  =  <. y ,  z
>.  ->  ( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  (
( 2nd `  a
) ^ 2 ) ) )  =  ( ( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )
2120ad2antrl 733 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  =  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )
22 simprrl 773 . . . . . . . . . . 11  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( y  e.  NN  /\  z  e.  NN ) )
23 simpl 459 . . . . . . . . . . 11  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  ->  D  e.  NN )
24 simprr 765 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
2524ad2antll 734 . . . . . . . . . . 11  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )
26 nnz 10961 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  ZZ )
2726ad2antrr 731 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  y  e.  ZZ )
28 zsqcl 12346 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  ZZ )
2927, 28syl 17 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( y ^ 2 )  e.  ZZ )
30 nnz 10961 . . . . . . . . . . . . . . 15  |-  ( D  e.  NN  ->  D  e.  ZZ )
3130ad2antrl 733 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  D  e.  ZZ )
32 simplr 761 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  z  e.  NN )
3332nnzd 11041 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  z  e.  ZZ )
34 zsqcl 12346 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
z ^ 2 )  e.  ZZ )
3533, 34syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( z ^ 2 )  e.  ZZ )
3631, 35zmulcld 11048 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( D  x.  ( z ^ 2 ) )  e.  ZZ )
3729, 36zsubcld 11047 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ZZ )
38 1re 9644 . . . . . . . . . . . . . . 15  |-  1  e.  RR
39 2re 10681 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
40 nnre 10618 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  NN  ->  D  e.  RR )
4140ad2antrl 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  D  e.  RR )
42 nnnn0 10878 . . . . . . . . . . . . . . . . . . 19  |-  ( D  e.  NN  ->  D  e.  NN0 )
4342ad2antrl 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  D  e.  NN0 )
4443nn0ge0d 10930 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  0  <_  D )
4541, 44resqrtcld 13473 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( sqr `  D )  e.  RR )
46 remulcl 9626 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  RR  /\  ( sqr `  D )  e.  RR )  -> 
( 2  x.  ( sqr `  D ) )  e.  RR )
4739, 45, 46sylancr 668 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( 2  x.  ( sqr `  D
) )  e.  RR )
48 readdcl 9624 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( 2  x.  ( sqr `  D ) )  e.  RR )  -> 
( 1  +  ( 2  x.  ( sqr `  D ) ) )  e.  RR )
4938, 47, 48sylancr 668 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  e.  RR )
5049flcld 12035 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )
5150znegcld 11044 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )
5237zred 11042 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  RR )
5350zred 11042 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  RR )
54 nn0abscl 13369 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  e.  ZZ  ->  ( abs `  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) )  e. 
NN0 )
5537, 54syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  e.  NN0 )
5655nn0zd 11040 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  e.  ZZ )
5756zred 11042 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  e.  RR )
58 peano2re 9808 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR  ->  (
( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 )  e.  RR )
5953, 58syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  +  1 )  e.  RR )
60 simprr 765 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
61 flltp1 12037 . . . . . . . . . . . . . . . 16  |-  ( ( 1  +  ( 2  x.  ( sqr `  D
) ) )  e.  RR  ->  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  < 
( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  +  1 ) )
6249, 61syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  < 
( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  +  1 ) )
6357, 49, 59, 60, 62lttrd 9798 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 ) )
64 zleltp1 10989 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  e.  ZZ  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  ZZ )  -> 
( ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <->  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 ) ) )
6556, 50, 64syl2anc 666 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( ( abs `  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) )  <_ 
( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  <-> 
( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 ) ) )
6663, 65mpbird 236 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )
67 absle 13372 . . . . . . . . . . . . . 14  |-  ( ( ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  RR  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR )  -> 
( ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <->  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
6867biimpa 487 . . . . . . . . . . . . 13  |-  ( ( ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  e.  RR  /\  ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR )  /\  ( abs `  ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  ->  ( -u ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  <_  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
6952, 53, 66, 68syl21anc 1264 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
70 elfz 11792 . . . . . . . . . . . . 13  |-  ( ( ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ZZ  /\  -u ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  ZZ  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )  ->  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  <->  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
7170biimpar 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  e.  ZZ  /\  -u ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  ZZ  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )  /\  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )  ->  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  e.  (
-u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
7237, 51, 50, 69, 71syl31anc 1268 . . . . . . . . . . 11  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
7322, 23, 25, 72syl12anc 1263 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
7473adantlr 720 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
75 simprl 763 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0 )
7675ad2antll 734 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0 )
77 eldifsn 4123 . . . . . . . . 9  |-  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  <->  ( (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0 ) )
7874, 76, 77sylanbrc 669 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( (
-u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) )
7921, 78eqeltrd 2511 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) )
8079ex 436 . . . . . 6  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( a  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) ) )
8180exlimdvv 1770 . . . . 5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( E. y E. z ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) ) )
825, 81syl5bi 221 . . . 4  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) ) )
8382imp 431 . . 3  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )  -> 
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) )
841, 4, 83fiphp3d 35625 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )
85 eldif 3447 . . . . . 6  |-  ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  <->  ( x  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  /\  -.  x  e.  { 0 } ) )
86 elfzelz 11802 . . . . . . . 8  |-  ( x  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  ->  x  e.  ZZ )
87 simp2 1007 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  x  e.  ZZ  /\ 
-.  x  e.  {
0 } )  ->  x  e.  ZZ )
88 elsn 4011 . . . . . . . . . . . . 13  |-  ( x  e.  { 0 }  <-> 
x  =  0 )
8988biimpri 210 . . . . . . . . . . . 12  |-  ( x  =  0  ->  x  e.  { 0 } )
9089necon3bi 2654 . . . . . . . . . . 11  |-  ( -.  x  e.  { 0 }  ->  x  =/=  0 )
91903ad2ant3 1029 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  x  e.  ZZ  /\ 
-.  x  e.  {
0 } )  ->  x  =/=  0 )
9287, 91jca 535 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  x  e.  ZZ  /\ 
-.  x  e.  {
0 } )  -> 
( x  e.  ZZ  /\  x  =/=  0 ) )
93923exp 1205 . . . . . . . 8  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ZZ  ->  ( -.  x  e.  { 0 }  ->  ( x  e.  ZZ  /\  x  =/=  0 ) ) ) )
9486, 93syl5 34 . . . . . . 7  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  -> 
( -.  x  e. 
{ 0 }  ->  ( x  e.  ZZ  /\  x  =/=  0 ) ) ) )
9594impd 433 . . . . . 6  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( x  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  /\  -.  x  e.  { 0 } )  ->  (
x  e.  ZZ  /\  x  =/=  0 ) ) )
9685, 95syl5bi 221 . . . . 5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } )  ->  ( x  e.  ZZ  /\  x  =/=  0 ) ) )
97 simp2l 1032 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  x  e.  ZZ )
98 simp2r 1033 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  x  =/=  0
)
99 nnex 10617 . . . . . . . . . . 11  |-  NN  e.  _V
10099, 99xpex 6607 . . . . . . . . . 10  |-  ( NN 
X.  NN )  e. 
_V
101 opabssxp 4926 . . . . . . . . . 10  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  C_  ( NN  X.  NN )
102 ssdomg 7620 . . . . . . . . . 10  |-  ( ( NN  X.  NN )  e.  _V  ->  ( { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  C_  ( NN  X.  NN )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  ( NN 
X.  NN ) ) )
103100, 101, 102mp2 9 . . . . . . . . 9  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  ( NN 
X.  NN )
104 xpnnen 14256 . . . . . . . . 9  |-  ( NN 
X.  NN )  ~~  NN
105 domentr 7633 . . . . . . . . 9  |-  ( ( { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~<_  ( NN  X.  NN )  /\  ( NN  X.  NN )  ~~  NN )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  NN )
106103, 104, 105mp2an 677 . . . . . . . 8  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  NN
107 ensym 7623 . . . . . . . . . 10  |-  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  NN 
~~  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x } )
1081073ad2ant3 1029 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  NN  ~~  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x } )
109100, 101ssexi 4567 . . . . . . . . . 10  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  e.  _V
110 fveq2 5879 . . . . . . . . . . . . . . . . 17  |-  ( a  =  b  ->  ( 1st `  a )  =  ( 1st `  b
) )
111110oveq1d 6318 . . . . . . . . . . . . . . . 16  |-  ( a  =  b  ->  (
( 1st `  a
) ^ 2 )  =  ( ( 1st `  b ) ^ 2 ) )
112 fveq2 5879 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  b  ->  ( 2nd `  a )  =  ( 2nd `  b
) )
113112oveq1d 6318 . . . . . . . . . . . . . . . . 17  |-  ( a  =  b  ->  (
( 2nd `  a
) ^ 2 )  =  ( ( 2nd `  b ) ^ 2 ) )
114113oveq2d 6319 . . . . . . . . . . . . . . . 16  |-  ( a  =  b  ->  ( D  x.  ( ( 2nd `  a ) ^
2 ) )  =  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )
115111, 114oveq12d 6321 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) ) )
116115eqeq1d 2425 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  =  x  <->  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x ) )
117116elrab 3230 . . . . . . . . . . . . 13  |-  ( b  e.  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  <->  ( b  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  /\  (
( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x ) )
118 simprl 763 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
b  =  <. y ,  z >. )
119 simprrl 773 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( y  e.  NN  /\  z  e.  NN ) )
120 fveq2 5879 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  <. y ,  z
>.  ->  ( 1st `  b
)  =  ( 1st `  <. y ,  z
>. ) )
121120oveq1d 6318 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  <. y ,  z
>.  ->  ( ( 1st `  b ) ^ 2 )  =  ( ( 1st `  <. y ,  z >. ) ^ 2 ) )
122 fveq2 5879 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( b  =  <. y ,  z
>.  ->  ( 2nd `  b
)  =  ( 2nd `  <. y ,  z
>. ) )
123122oveq1d 6318 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  <. y ,  z
>.  ->  ( ( 2nd `  b ) ^ 2 )  =  ( ( 2nd `  <. y ,  z >. ) ^ 2 ) )
124123oveq2d 6319 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  <. y ,  z
>.  ->  ( D  x.  ( ( 2nd `  b
) ^ 2 ) )  =  ( D  x.  ( ( 2nd `  <. y ,  z
>. ) ^ 2 ) ) )
125121, 124oveq12d 6321 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b  =  <. y ,  z
>.  ->  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  ( ( ( 1st `  <. y ,  z >. ) ^ 2 )  -  ( D  x.  (
( 2nd `  <. y ,  z >. ) ^ 2 ) ) ) )
126125, 19syl6req 2481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b  =  <. y ,  z
>.  ->  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) ) )
127126ad2antrl 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) ) )
128 simplr 761 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  ( ( 2nd `  b ) ^ 2 ) ) )  =  x )
129127, 128eqtrd 2464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x )
130118, 119, 129jca32 538 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( b  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) ) )
131130ex 436 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  ( (
b  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  (
b  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) ) ) )
1321312eximdv 1757 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  ( E. y E. z ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  E. y E. z ( b  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) ) ) )
133 elopab 4726 . . . . . . . . . . . . . . . 16  |-  ( b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  <->  E. y E. z ( b  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )
134 elopab 4726 . . . . . . . . . . . . . . . 16  |-  ( b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  <->  E. y E. z ( b  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) ) )
135132, 133, 1343imtr4g 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  ( b  e.  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  ->  b  e.  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) } ) )
136135expimpd 607 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  -> 
( ( ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x  /\  b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )  -> 
b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } ) )
137136ancomsd 456 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  -> 
( ( b  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  /\  (
( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  b  e.  {
<. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } ) )
138117, 137syl5bi 221 . . . . . . . . . . . 12  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  -> 
( b  e.  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ->  b  e.  {
<. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } ) )
139138ssrdv 3471 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  ->  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  C_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
1401393adant3 1026 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  C_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
141 ssdomg 7620 . . . . . . . . . 10  |-  ( {
<. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) }  e.  _V  ->  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  C_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ->  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } ) )
142109, 140, 141mpsyl 66 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
143 endomtr 7632 . . . . . . . . 9  |-  ( ( NN  ~~  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  /\  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )  ->  NN 
~<_  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) } )
144108, 142, 143syl2anc 666 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  NN  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
145 sbth 7696 . . . . . . . 8  |-  ( ( { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~<_  NN  /\  NN  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )  ->  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN )
146106, 144, 145sylancr 668 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~~  NN )
14797, 98, 146jca32 538 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } 
~~  NN ) ) )
1481473exp 1205 . . . . 5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( x  e.  ZZ  /\  x  =/=  0 )  ->  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) ) ) ) )
14996, 148syld 46 . . . 4  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } )  ->  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) ) ) ) )
150149impd 433 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  /\  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } 
~~  NN ) ) ) )
151150reximdv2 2897 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( E. x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  E. x  e.  ZZ  (
x  =/=  0  /\ 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) ) )
15284, 151mpd 15 1  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  ZZ  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438   E.wex 1660    e. wcel 1869    =/= wne 2619   E.wrex 2777   {crab 2780   _Vcvv 3082    \ cdif 3434    C_ wss 3437   {csn 3997   <.cop 4003   class class class wbr 4421   {copab 4479    X. cxp 4849   ` cfv 5599  (class class class)co 6303   1stc1st 6803   2ndc2nd 6804    ~~ cen 7572    ~<_ cdom 7573   Fincfn 7575   RRcr 9540   0cc0 9541   1c1 9542    + caddc 9544    x. cmul 9546    < clt 9677    <_ cle 9678    - cmin 9862   -ucneg 9863   NNcn 10611   2c2 10661   NN0cn0 10871   ZZcz 10939   QQcq 11266   ...cfz 11786   |_cfl 12027   ^cexp 12273   sqrcsqrt 13290   abscabs 13291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-omul 7193  df-er 7369  df-map 7480  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-acn 8379  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-n0 10872  df-z 10940  df-uz 11162  df-q 11267  df-rp 11305  df-ico 11643  df-fz 11787  df-fl 12029  df-mod 12098  df-seq 12215  df-exp 12274  df-hash 12517  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-dvds 14299  df-gcd 14462  df-numer 14677  df-denom 14678
This theorem is referenced by:  pellex  35643
  Copyright terms: Public domain W3C validator