Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem5 Structured version   Visualization version   Unicode version

Theorem pellexlem5 35748
Description: Lemma for pellex 35750. Invoking fiphp3d 35733, we have infinitely many near-solutions for some specific norm. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellexlem5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  ZZ  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) )
Distinct variable group:    x, D, y, z

Proof of Theorem pellexlem5
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellexlem4 35747 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  ~~  NN )
2 fzfi 12223 . . . 4  |-  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  e.  Fin
3 diffi 7821 . . . 4  |-  ( (
-u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  e. 
Fin  ->  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  e. 
Fin )
42, 3mp1i 13 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  e. 
Fin )
5 elopab 4709 . . . . 5  |-  ( a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  <->  E. y E. z ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )
6 fveq2 5879 . . . . . . . . . . . 12  |-  ( a  =  <. y ,  z
>.  ->  ( 1st `  a
)  =  ( 1st `  <. y ,  z
>. ) )
76oveq1d 6323 . . . . . . . . . . 11  |-  ( a  =  <. y ,  z
>.  ->  ( ( 1st `  a ) ^ 2 )  =  ( ( 1st `  <. y ,  z >. ) ^ 2 ) )
8 fveq2 5879 . . . . . . . . . . . . 13  |-  ( a  =  <. y ,  z
>.  ->  ( 2nd `  a
)  =  ( 2nd `  <. y ,  z
>. ) )
98oveq1d 6323 . . . . . . . . . . . 12  |-  ( a  =  <. y ,  z
>.  ->  ( ( 2nd `  a ) ^ 2 )  =  ( ( 2nd `  <. y ,  z >. ) ^ 2 ) )
109oveq2d 6324 . . . . . . . . . . 11  |-  ( a  =  <. y ,  z
>.  ->  ( D  x.  ( ( 2nd `  a
) ^ 2 ) )  =  ( D  x.  ( ( 2nd `  <. y ,  z
>. ) ^ 2 ) ) )
117, 10oveq12d 6326 . . . . . . . . . 10  |-  ( a  =  <. y ,  z
>.  ->  ( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  (
( 2nd `  a
) ^ 2 ) ) )  =  ( ( ( 1st `  <. y ,  z >. ) ^ 2 )  -  ( D  x.  (
( 2nd `  <. y ,  z >. ) ^ 2 ) ) ) )
12 vex 3034 . . . . . . . . . . . . 13  |-  y  e. 
_V
13 vex 3034 . . . . . . . . . . . . 13  |-  z  e. 
_V
1412, 13op1st 6820 . . . . . . . . . . . 12  |-  ( 1st `  <. y ,  z
>. )  =  y
1514oveq1i 6318 . . . . . . . . . . 11  |-  ( ( 1st `  <. y ,  z >. ) ^ 2 )  =  ( y ^ 2 )
1612, 13op2nd 6821 . . . . . . . . . . . . 13  |-  ( 2nd `  <. y ,  z
>. )  =  z
1716oveq1i 6318 . . . . . . . . . . . 12  |-  ( ( 2nd `  <. y ,  z >. ) ^ 2 )  =  ( z ^ 2 )
1817oveq2i 6319 . . . . . . . . . . 11  |-  ( D  x.  ( ( 2nd `  <. y ,  z
>. ) ^ 2 ) )  =  ( D  x.  ( z ^
2 ) )
1915, 18oveq12i 6320 . . . . . . . . . 10  |-  ( ( ( 1st `  <. y ,  z >. ) ^ 2 )  -  ( D  x.  (
( 2nd `  <. y ,  z >. ) ^ 2 ) ) )  =  ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )
2011, 19syl6eq 2521 . . . . . . . . 9  |-  ( a  =  <. y ,  z
>.  ->  ( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  (
( 2nd `  a
) ^ 2 ) ) )  =  ( ( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )
2120ad2antrl 742 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  =  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )
22 simprrl 782 . . . . . . . . . . 11  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( y  e.  NN  /\  z  e.  NN ) )
23 simpl 464 . . . . . . . . . . 11  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  ->  D  e.  NN )
24 simprr 774 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
2524ad2antll 743 . . . . . . . . . . 11  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )
26 nnz 10983 . . . . . . . . . . . . . . 15  |-  ( y  e.  NN  ->  y  e.  ZZ )
2726ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  y  e.  ZZ )
28 zsqcl 12383 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  ZZ )
2927, 28syl 17 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( y ^ 2 )  e.  ZZ )
30 nnz 10983 . . . . . . . . . . . . . . 15  |-  ( D  e.  NN  ->  D  e.  ZZ )
3130ad2antrl 742 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  D  e.  ZZ )
32 simplr 770 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  z  e.  NN )
3332nnzd 11062 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  z  e.  ZZ )
34 zsqcl 12383 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
z ^ 2 )  e.  ZZ )
3533, 34syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( z ^ 2 )  e.  ZZ )
3631, 35zmulcld 11069 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( D  x.  ( z ^ 2 ) )  e.  ZZ )
3729, 36zsubcld 11068 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ZZ )
38 1re 9660 . . . . . . . . . . . . . . 15  |-  1  e.  RR
39 2re 10701 . . . . . . . . . . . . . . . 16  |-  2  e.  RR
40 nnre 10638 . . . . . . . . . . . . . . . . . 18  |-  ( D  e.  NN  ->  D  e.  RR )
4140ad2antrl 742 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  D  e.  RR )
42 nnnn0 10900 . . . . . . . . . . . . . . . . . . 19  |-  ( D  e.  NN  ->  D  e.  NN0 )
4342ad2antrl 742 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  D  e.  NN0 )
4443nn0ge0d 10952 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  0  <_  D )
4541, 44resqrtcld 13556 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( sqr `  D )  e.  RR )
46 remulcl 9642 . . . . . . . . . . . . . . . 16  |-  ( ( 2  e.  RR  /\  ( sqr `  D )  e.  RR )  -> 
( 2  x.  ( sqr `  D ) )  e.  RR )
4739, 45, 46sylancr 676 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( 2  x.  ( sqr `  D
) )  e.  RR )
48 readdcl 9640 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( 2  x.  ( sqr `  D ) )  e.  RR )  -> 
( 1  +  ( 2  x.  ( sqr `  D ) ) )  e.  RR )
4938, 47, 48sylancr 676 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  e.  RR )
5049flcld 12067 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )
5150znegcld 11065 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )
5237zred 11063 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  RR )
5350zred 11063 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  RR )
54 nn0abscl 13452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  e.  ZZ  ->  ( abs `  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) )  e. 
NN0 )
5537, 54syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  e.  NN0 )
5655nn0zd 11061 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  e.  ZZ )
5756zred 11063 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  e.  RR )
58 peano2re 9824 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR  ->  (
( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 )  e.  RR )
5953, 58syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  +  1 )  e.  RR )
60 simprr 774 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
61 flltp1 12069 . . . . . . . . . . . . . . . 16  |-  ( ( 1  +  ( 2  x.  ( sqr `  D
) ) )  e.  RR  ->  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  < 
( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  +  1 ) )
6249, 61syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  < 
( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  +  1 ) )
6357, 49, 59, 60, 62lttrd 9813 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 ) )
64 zleltp1 11011 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  e.  ZZ  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  ZZ )  -> 
( ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <->  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 ) ) )
6556, 50, 64syl2anc 673 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( ( abs `  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) )  <_ 
( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  <-> 
( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  +  1 ) ) )
6663, 65mpbird 240 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )
67 absle 13455 . . . . . . . . . . . . . 14  |-  ( ( ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  RR  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR )  -> 
( ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <->  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
6867biimpa 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  e.  RR  /\  ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR )  /\  ( abs `  ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  ->  ( -u ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  <_  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
6952, 53, 66, 68syl21anc 1291 . . . . . . . . . . . 12  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
70 elfz 11816 . . . . . . . . . . . . 13  |-  ( ( ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ZZ  /\  -u ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  ZZ  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )  ->  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  <->  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
7170biimpar 493 . . . . . . . . . . . 12  |-  ( ( ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  e.  ZZ  /\  -u ( |_ `  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  ZZ  /\  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  e.  ZZ )  /\  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )  <_  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  <_  ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )  ->  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  e.  (
-u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
7237, 51, 50, 69, 71syl31anc 1295 . . . . . . . . . . 11  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( D  e.  NN  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
7322, 23, 25, 72syl12anc 1290 . . . . . . . . . 10  |-  ( ( D  e.  NN  /\  ( a  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
7473adantlr 729 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
75 simprl 772 . . . . . . . . . 10  |-  ( ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0 )
7675ad2antll 743 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0 )
77 eldifsn 4088 . . . . . . . . 9  |-  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  <->  ( (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0 ) )
7874, 76, 77sylanbrc 677 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  e.  ( (
-u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) )
7921, 78eqeltrd 2549 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) )
8079ex 441 . . . . . 6  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( a  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) ) )
8180exlimdvv 1788 . . . . 5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( E. y E. z ( a  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) ) )
825, 81syl5bi 225 . . . 4  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) ) )
8382imp 436 . . 3  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )  -> 
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) )
841, 4, 83fiphp3d 35733 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  ( ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )
85 eldif 3400 . . . . . 6  |-  ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  <->  ( x  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  /\  -.  x  e.  { 0 } ) )
86 elfzelz 11826 . . . . . . . 8  |-  ( x  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  ->  x  e.  ZZ )
87 simp2 1031 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  x  e.  ZZ  /\ 
-.  x  e.  {
0 } )  ->  x  e.  ZZ )
88 elsn 3973 . . . . . . . . . . . . 13  |-  ( x  e.  { 0 }  <-> 
x  =  0 )
8988biimpri 211 . . . . . . . . . . . 12  |-  ( x  =  0  ->  x  e.  { 0 } )
9089necon3bi 2669 . . . . . . . . . . 11  |-  ( -.  x  e.  { 0 }  ->  x  =/=  0 )
91903ad2ant3 1053 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  x  e.  ZZ  /\ 
-.  x  e.  {
0 } )  ->  x  =/=  0 )
9287, 91jca 541 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  x  e.  ZZ  /\ 
-.  x  e.  {
0 } )  -> 
( x  e.  ZZ  /\  x  =/=  0 ) )
93923exp 1230 . . . . . . . 8  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ZZ  ->  ( -.  x  e.  { 0 }  ->  ( x  e.  ZZ  /\  x  =/=  0 ) ) ) )
9486, 93syl5 32 . . . . . . 7  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ( -u ( |_
`  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  -> 
( -.  x  e. 
{ 0 }  ->  ( x  e.  ZZ  /\  x  =/=  0 ) ) ) )
9594impd 438 . . . . . 6  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( x  e.  ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  /\  -.  x  e.  { 0 } )  ->  (
x  e.  ZZ  /\  x  =/=  0 ) ) )
9685, 95syl5bi 225 . . . . 5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } )  ->  ( x  e.  ZZ  /\  x  =/=  0 ) ) )
97 simp2l 1056 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  x  e.  ZZ )
98 simp2r 1057 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  x  =/=  0
)
99 nnex 10637 . . . . . . . . . . 11  |-  NN  e.  _V
10099, 99xpex 6614 . . . . . . . . . 10  |-  ( NN 
X.  NN )  e. 
_V
101 opabssxp 4914 . . . . . . . . . 10  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  C_  ( NN  X.  NN )
102 ssdomg 7633 . . . . . . . . . 10  |-  ( ( NN  X.  NN )  e.  _V  ->  ( { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  C_  ( NN  X.  NN )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  ( NN 
X.  NN ) ) )
103100, 101, 102mp2 9 . . . . . . . . 9  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  ( NN 
X.  NN )
104 xpnnen 14340 . . . . . . . . 9  |-  ( NN 
X.  NN )  ~~  NN
105 domentr 7646 . . . . . . . . 9  |-  ( ( { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~<_  ( NN  X.  NN )  /\  ( NN  X.  NN )  ~~  NN )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  NN )
106103, 104, 105mp2an 686 . . . . . . . 8  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~<_  NN
107 ensym 7636 . . . . . . . . . 10  |-  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  NN 
~~  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x } )
1081073ad2ant3 1053 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  NN  ~~  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x } )
109100, 101ssexi 4541 . . . . . . . . . 10  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  e.  _V
110 fveq2 5879 . . . . . . . . . . . . . . . . 17  |-  ( a  =  b  ->  ( 1st `  a )  =  ( 1st `  b
) )
111110oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( a  =  b  ->  (
( 1st `  a
) ^ 2 )  =  ( ( 1st `  b ) ^ 2 ) )
112 fveq2 5879 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  b  ->  ( 2nd `  a )  =  ( 2nd `  b
) )
113112oveq1d 6323 . . . . . . . . . . . . . . . . 17  |-  ( a  =  b  ->  (
( 2nd `  a
) ^ 2 )  =  ( ( 2nd `  b ) ^ 2 ) )
114113oveq2d 6324 . . . . . . . . . . . . . . . 16  |-  ( a  =  b  ->  ( D  x.  ( ( 2nd `  a ) ^
2 ) )  =  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )
115111, 114oveq12d 6326 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  (
( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) ) )
116115eqeq1d 2473 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  (
( ( ( 1st `  a ) ^ 2 )  -  ( D  x.  ( ( 2nd `  a ) ^ 2 ) ) )  =  x  <->  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x ) )
117116elrab 3184 . . . . . . . . . . . . 13  |-  ( b  e.  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  <->  ( b  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  /\  (
( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x ) )
118 simprl 772 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
b  =  <. y ,  z >. )
119 simprrl 782 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( y  e.  NN  /\  z  e.  NN ) )
120 fveq2 5879 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  <. y ,  z
>.  ->  ( 1st `  b
)  =  ( 1st `  <. y ,  z
>. ) )
121120oveq1d 6323 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  <. y ,  z
>.  ->  ( ( 1st `  b ) ^ 2 )  =  ( ( 1st `  <. y ,  z >. ) ^ 2 ) )
122 fveq2 5879 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( b  =  <. y ,  z
>.  ->  ( 2nd `  b
)  =  ( 2nd `  <. y ,  z
>. ) )
123122oveq1d 6323 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b  =  <. y ,  z
>.  ->  ( ( 2nd `  b ) ^ 2 )  =  ( ( 2nd `  <. y ,  z >. ) ^ 2 ) )
124123oveq2d 6324 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( b  =  <. y ,  z
>.  ->  ( D  x.  ( ( 2nd `  b
) ^ 2 ) )  =  ( D  x.  ( ( 2nd `  <. y ,  z
>. ) ^ 2 ) ) )
125121, 124oveq12d 6326 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( b  =  <. y ,  z
>.  ->  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  ( ( ( 1st `  <. y ,  z >. ) ^ 2 )  -  ( D  x.  (
( 2nd `  <. y ,  z >. ) ^ 2 ) ) ) )
126125, 19syl6req 2522 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b  =  <. y ,  z
>.  ->  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) ) )
127126ad2antrl 742 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) ) )
128 simplr 770 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  ( ( 2nd `  b ) ^ 2 ) ) )  =  x )
129127, 128eqtrd 2505 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x )
130118, 119, 129jca32 544 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  /\  ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )  -> 
( b  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) ) )
131130ex 441 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  ( (
b  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  (
b  =  <. y ,  z >.  /\  (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) ) ) )
1321312eximdv 1774 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  ( E. y E. z ( b  =  <. y ,  z
>.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )  ->  E. y E. z ( b  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) ) ) )
133 elopab 4709 . . . . . . . . . . . . . . . 16  |-  ( b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  <->  E. y E. z ( b  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) ) )
134 elopab 4709 . . . . . . . . . . . . . . . 16  |-  ( b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  <->  E. y E. z ( b  = 
<. y ,  z >.  /\  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) ) )
135132, 133, 1343imtr4g 278 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  /\  ( ( ( 1st `  b ) ^ 2 )  -  ( D  x.  (
( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  ( b  e.  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  ->  b  e.  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) } ) )
136135expimpd 614 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  -> 
( ( ( ( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x  /\  b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )  -> 
b  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } ) )
137136ancomsd 461 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  -> 
( ( b  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  /\  (
( ( 1st `  b
) ^ 2 )  -  ( D  x.  ( ( 2nd `  b
) ^ 2 ) ) )  =  x )  ->  b  e.  {
<. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } ) )
138117, 137syl5bi 225 . . . . . . . . . . . 12  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  -> 
( b  e.  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ->  b  e.  {
<. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } ) )
139138ssrdv 3424 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 ) )  ->  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  C_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
1401393adant3 1050 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  C_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
141 ssdomg 7633 . . . . . . . . . 10  |-  ( {
<. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) }  e.  _V  ->  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  C_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ->  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } ) )
142109, 140, 141mpsyl 64 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  { a  e. 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
143 endomtr 7645 . . . . . . . . 9  |-  ( ( NN  ~~  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  /\  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )  ->  NN 
~<_  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) } )
144108, 142, 143syl2anc 673 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  NN  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )
145 sbth 7710 . . . . . . . 8  |-  ( ( { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~<_  NN  /\  NN  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) } )  ->  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN )
146106, 144, 145sylancr 676 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  x ) }  ~~  NN )
14797, 98, 146jca32 544 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( x  e.  ZZ  /\  x  =/=  0 )  /\  {
a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } 
~~  NN ) ) )
1481473exp 1230 . . . . 5  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( x  e.  ZZ  /\  x  =/=  0 )  ->  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) ) ) ) )
14996, 148syld 44 . . . 4  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } )  ->  ( { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) ) ) ) )
150149impd 438 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  {
0 } )  /\  { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN )  ->  ( x  e.  ZZ  /\  ( x  =/=  0  /\  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =  x ) } 
~~  NN ) ) ) )
151150reximdv2 2855 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( E. x  e.  ( ( -u ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ... ( |_ `  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )  \  { 0 } ) { a  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  |  ( ( ( 1st `  a
) ^ 2 )  -  ( D  x.  ( ( 2nd `  a
) ^ 2 ) ) )  =  x }  ~~  NN  ->  E. x  e.  ZZ  (
x  =/=  0  /\ 
{ <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) ) )
15284, 151mpd 15 1  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  ZZ  ( x  =/=  0  /\  { <. y ,  z
>.  |  ( (
y  e.  NN  /\  z  e.  NN )  /\  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  x ) }  ~~  NN ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   E.wrex 2757   {crab 2760   _Vcvv 3031    \ cdif 3387    C_ wss 3390   {csn 3959   <.cop 3965   class class class wbr 4395   {copab 4453    X. cxp 4837   ` cfv 5589  (class class class)co 6308   1stc1st 6810   2ndc2nd 6811    ~~ cen 7584    ~<_ cdom 7585   Fincfn 7587   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880   -ucneg 9881   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   QQcq 11287   ...cfz 11810   |_cfl 12059   ^cexp 12310   sqrcsqrt 13373   abscabs 13374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-omul 7205  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-acn 8394  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-ico 11666  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-numer 14763  df-denom 14764
This theorem is referenced by:  pellex  35750
  Copyright terms: Public domain W3C validator