Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem3 Structured version   Unicode version

Theorem pellexlem3 29097
Description: Lemma for pellex 29101. To each good rational approximation of  ( sqr `  D
), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )
Distinct variable group:    x, D, y, z

Proof of Theorem pellexlem3
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 10324 . . . 4  |-  NN  e.  _V
21, 1xpex 6507 . . 3  |-  ( NN 
X.  NN )  e. 
_V
3 opabssxp 4907 . . 3  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  C_  ( NN  X.  NN )
42, 3ssexi 4434 . 2  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  e.  _V
5 simprl 750 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  a  e.  QQ )
6 simprrl 758 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  0  <  a )
7 qgt0numnn 13825 . . . . . . . 8  |-  ( ( a  e.  QQ  /\  0  <  a )  -> 
(numer `  a )  e.  NN )
85, 6, 7syl2anc 656 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (numer `  a )  e.  NN )
9 qdencl 13815 . . . . . . . 8  |-  ( a  e.  QQ  ->  (denom `  a )  e.  NN )
105, 9syl 16 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (denom `  a )  e.  NN )
118, 10jca 529 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (
(numer `  a )  e.  NN  /\  (denom `  a )  e.  NN ) )
12 simpll 748 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  D  e.  NN )
13 simplr 749 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  -.  ( sqr `  D )  e.  QQ )
14 pellexlem1 29095 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  -.  ( sqr `  D )  e.  QQ )  ->  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0 )
1512, 8, 10, 13, 14syl31anc 1216 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0 )
16 simprrr 759 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) )
17 qeqnumdivden 13820 . . . . . . . . . . . 12  |-  ( a  e.  QQ  ->  a  =  ( (numer `  a )  /  (denom `  a ) ) )
1817oveq1d 6105 . . . . . . . . . . 11  |-  ( a  e.  QQ  ->  (
a  -  ( sqr `  D ) )  =  ( ( (numer `  a )  /  (denom `  a ) )  -  ( sqr `  D ) ) )
1918fveq2d 5692 . . . . . . . . . 10  |-  ( a  e.  QQ  ->  ( abs `  ( a  -  ( sqr `  D ) ) )  =  ( abs `  ( ( (numer `  a )  /  (denom `  a )
)  -  ( sqr `  D ) ) ) )
2019breq1d 4299 . . . . . . . . 9  |-  ( a  e.  QQ  ->  (
( abs `  (
a  -  ( sqr `  D ) ) )  <  ( (denom `  a ) ^ -u 2
)  <->  ( abs `  (
( (numer `  a
)  /  (denom `  a ) )  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) )
215, 20syl 16 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (
( abs `  (
a  -  ( sqr `  D ) ) )  <  ( (denom `  a ) ^ -u 2
)  <->  ( abs `  (
( (numer `  a
)  /  (denom `  a ) )  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) )
2216, 21mpbid 210 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  ( abs `  ( ( (numer `  a )  /  (denom `  a ) )  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) )
23 pellexlem2 29096 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  ( abs `  (
( (numer `  a
)  /  (denom `  a ) )  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) )  ->  ( abs `  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
2412, 8, 10, 22, 23syl31anc 1216 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )
2511, 15, 24jca32 532 . . . . 5  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (
( (numer `  a
)  e.  NN  /\  (denom `  a )  e.  NN )  /\  (
( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
2625ex 434 . . . 4  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( a  e.  QQ  /\  (
0  <  a  /\  ( abs `  ( a  -  ( sqr `  D
) ) )  < 
( (denom `  a
) ^ -u 2
) ) )  -> 
( ( (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  (
( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
27 breq2 4293 . . . . . 6  |-  ( x  =  a  ->  (
0  <  x  <->  0  <  a ) )
28 oveq1 6097 . . . . . . . 8  |-  ( x  =  a  ->  (
x  -  ( sqr `  D ) )  =  ( a  -  ( sqr `  D ) ) )
2928fveq2d 5692 . . . . . . 7  |-  ( x  =  a  ->  ( abs `  ( x  -  ( sqr `  D ) ) )  =  ( abs `  ( a  -  ( sqr `  D
) ) ) )
30 fveq2 5688 . . . . . . . 8  |-  ( x  =  a  ->  (denom `  x )  =  (denom `  a ) )
3130oveq1d 6105 . . . . . . 7  |-  ( x  =  a  ->  (
(denom `  x ) ^ -u 2 )  =  ( (denom `  a
) ^ -u 2
) )
3229, 31breq12d 4302 . . . . . 6  |-  ( x  =  a  ->  (
( abs `  (
x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
)  <->  ( abs `  (
a  -  ( sqr `  D ) ) )  <  ( (denom `  a ) ^ -u 2
) ) )
3327, 32anbi12d 705 . . . . 5  |-  ( x  =  a  ->  (
( 0  <  x  /\  ( abs `  (
x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) )  <->  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )
3433elrab 3114 . . . 4  |-  ( a  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  <->  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )
35 fvex 5698 . . . . 5  |-  (numer `  a )  e.  _V
36 fvex 5698 . . . . 5  |-  (denom `  a )  e.  _V
37 eleq1 2501 . . . . . . 7  |-  ( y  =  (numer `  a
)  ->  ( y  e.  NN  <->  (numer `  a )  e.  NN ) )
3837anbi1d 699 . . . . . 6  |-  ( y  =  (numer `  a
)  ->  ( (
y  e.  NN  /\  z  e.  NN )  <->  ( (numer `  a )  e.  NN  /\  z  e.  NN ) ) )
39 oveq1 6097 . . . . . . . . 9  |-  ( y  =  (numer `  a
)  ->  ( y ^ 2 )  =  ( (numer `  a
) ^ 2 ) )
4039oveq1d 6105 . . . . . . . 8  |-  ( y  =  (numer `  a
)  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )
4140neeq1d 2619 . . . . . . 7  |-  ( y  =  (numer `  a
)  ->  ( (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =/=  0  <->  ( (
(numer `  a ) ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0
) )
4240fveq2d 5692 . . . . . . . 8  |-  ( y  =  (numer `  a
)  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  =  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) ) )
4342breq1d 4299 . . . . . . 7  |-  ( y  =  (numer `  a
)  ->  ( ( abs `  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) )  < 
( 1  +  ( 2  x.  ( sqr `  D ) ) )  <-> 
( abs `  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )
4441, 43anbi12d 705 . . . . . 6  |-  ( y  =  (numer `  a
)  ->  ( (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  <-> 
( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )
4538, 44anbi12d 705 . . . . 5  |-  ( y  =  (numer `  a
)  ->  ( (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  <->  ( ( (numer `  a )  e.  NN  /\  z  e.  NN )  /\  ( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
46 eleq1 2501 . . . . . . 7  |-  ( z  =  (denom `  a
)  ->  ( z  e.  NN  <->  (denom `  a )  e.  NN ) )
4746anbi2d 698 . . . . . 6  |-  ( z  =  (denom `  a
)  ->  ( (
(numer `  a )  e.  NN  /\  z  e.  NN )  <->  ( (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN ) ) )
48 oveq1 6097 . . . . . . . . . 10  |-  ( z  =  (denom `  a
)  ->  ( z ^ 2 )  =  ( (denom `  a
) ^ 2 ) )
4948oveq2d 6106 . . . . . . . . 9  |-  ( z  =  (denom `  a
)  ->  ( D  x.  ( z ^ 2 ) )  =  ( D  x.  ( (denom `  a ) ^ 2 ) ) )
5049oveq2d 6106 . . . . . . . 8  |-  ( z  =  (denom `  a
)  ->  ( (
(numer `  a ) ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  ( ( (numer `  a
) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )
5150neeq1d 2619 . . . . . . 7  |-  ( z  =  (denom `  a
)  ->  ( (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  <->  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0 ) )
5250fveq2d 5692 . . . . . . . 8  |-  ( z  =  (denom `  a
)  ->  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  =  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) ) )
5352breq1d 4299 . . . . . . 7  |-  ( z  =  (denom `  a
)  ->  ( ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  <->  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )
5451, 53anbi12d 705 . . . . . 6  |-  ( z  =  (denom `  a
)  ->  ( (
( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  <-> 
( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
5547, 54anbi12d 705 . . . . 5  |-  ( z  =  (denom `  a
)  ->  ( (
( (numer `  a
)  e.  NN  /\  z  e.  NN )  /\  ( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  <->  ( ( (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  (
( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
5635, 36, 45, 55opelopab 4608 . . . 4  |-  ( <.
(numer `  a ) ,  (denom `  a ) >.  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  <->  ( (
(numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  ( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  (
(denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )
5726, 34, 563imtr4g 270 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  ->  <.
(numer `  a ) ,  (denom `  a ) >.  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } ) )
58 ssrab2 3434 . . . . . 6  |-  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  C_  QQ
59 simprl 750 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
a  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } )
6058, 59sseldi 3351 . . . . 5  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
a  e.  QQ )
61 simprr 751 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } )
6258, 61sseldi 3351 . . . . 5  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
b  e.  QQ )
6335, 36opth 4563 . . . . . . 7  |-  ( <.
(numer `  a ) ,  (denom `  a ) >.  =  <. (numer `  b
) ,  (denom `  b ) >.  <->  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )
64 simprl 750 . . . . . . . . . 10  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  (numer `  a
)  =  (numer `  b ) )
65 simprr 751 . . . . . . . . . 10  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  (denom `  a
)  =  (denom `  b ) )
6664, 65oveq12d 6108 . . . . . . . . 9  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  ( (numer `  a )  /  (denom `  a ) )  =  ( (numer `  b
)  /  (denom `  b ) ) )
67 simpll 748 . . . . . . . . . 10  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  a  e.  QQ )
6867, 17syl 16 . . . . . . . . 9  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  a  =  ( (numer `  a )  /  (denom `  a )
) )
69 simplr 749 . . . . . . . . . 10  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  b  e.  QQ )
70 qeqnumdivden 13820 . . . . . . . . . 10  |-  ( b  e.  QQ  ->  b  =  ( (numer `  b )  /  (denom `  b ) ) )
7169, 70syl 16 . . . . . . . . 9  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  b  =  ( (numer `  b )  /  (denom `  b )
) )
7266, 68, 713eqtr4d 2483 . . . . . . . 8  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  a  =  b )
7372ex 434 . . . . . . 7  |-  ( ( a  e.  QQ  /\  b  e.  QQ )  ->  ( ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) )  -> 
a  =  b ) )
7463, 73syl5bi 217 . . . . . 6  |-  ( ( a  e.  QQ  /\  b  e.  QQ )  ->  ( <. (numer `  a
) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >.  ->  a  =  b ) )
75 fveq2 5688 . . . . . . 7  |-  ( a  =  b  ->  (numer `  a )  =  (numer `  b ) )
76 fveq2 5688 . . . . . . 7  |-  ( a  =  b  ->  (denom `  a )  =  (denom `  b ) )
7775, 76opeq12d 4064 . . . . . 6  |-  ( a  =  b  ->  <. (numer `  a ) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >. )
7874, 77impbid1 203 . . . . 5  |-  ( ( a  e.  QQ  /\  b  e.  QQ )  ->  ( <. (numer `  a
) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >.  <->  a  =  b ) )
7960, 62, 78syl2anc 656 . . . 4  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
( <. (numer `  a
) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >.  <->  a  =  b ) )
8079ex 434 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( a  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  /\  b  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) } )  ->  ( <. (numer `  a ) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >.  <->  a  =  b ) ) )
8157, 80dom2d 7346 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  e.  _V  ->  { x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } ) )
824, 81mpi 17 1  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   {crab 2717   _Vcvv 2970   <.cop 3880   class class class wbr 4289   {copab 4346    X. cxp 4834   ` cfv 5415  (class class class)co 6090    ~<_ cdom 7304   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    - cmin 9591   -ucneg 9592    / cdiv 9989   NNcn 10318   2c2 10367   QQcq 10949   ^cexp 11861   sqrcsqr 12718   abscabs 12719  numercnumer 13807  denomcdenom 13808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-dvds 13532  df-gcd 13687  df-numer 13809  df-denom 13810
This theorem is referenced by:  pellexlem4  29098
  Copyright terms: Public domain W3C validator