Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem3 Unicode version

Theorem pellexlem3 26784
Description: Lemma for pellex 26788. To each good rational approximation of  ( sqr `  D
), there exists a near-solution. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )
Distinct variable group:    x, D, y, z

Proof of Theorem pellexlem3
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnex 9962 . . . 4  |-  NN  e.  _V
21, 1xpex 4949 . . 3  |-  ( NN 
X.  NN )  e. 
_V
3 opabssxp 4909 . . 3  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  C_  ( NN  X.  NN )
42, 3ssexi 4308 . 2  |-  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  e.  _V
5 simprl 733 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  a  e.  QQ )
6 simprrl 741 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  0  <  a )
7 qgt0numnn 13098 . . . . . . . 8  |-  ( ( a  e.  QQ  /\  0  <  a )  -> 
(numer `  a )  e.  NN )
85, 6, 7syl2anc 643 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (numer `  a )  e.  NN )
9 qdencl 13088 . . . . . . . 8  |-  ( a  e.  QQ  ->  (denom `  a )  e.  NN )
105, 9syl 16 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (denom `  a )  e.  NN )
118, 10jca 519 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (
(numer `  a )  e.  NN  /\  (denom `  a )  e.  NN ) )
12 simpll 731 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  D  e.  NN )
13 simplr 732 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  -.  ( sqr `  D )  e.  QQ )
14 pellexlem1 26782 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  -.  ( sqr `  D )  e.  QQ )  ->  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0 )
1512, 8, 10, 13, 14syl31anc 1187 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0 )
16 simprrr 742 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) )
17 qeqnumdivden 13093 . . . . . . . . . . . 12  |-  ( a  e.  QQ  ->  a  =  ( (numer `  a )  /  (denom `  a ) ) )
1817oveq1d 6055 . . . . . . . . . . 11  |-  ( a  e.  QQ  ->  (
a  -  ( sqr `  D ) )  =  ( ( (numer `  a )  /  (denom `  a ) )  -  ( sqr `  D ) ) )
1918fveq2d 5691 . . . . . . . . . 10  |-  ( a  e.  QQ  ->  ( abs `  ( a  -  ( sqr `  D ) ) )  =  ( abs `  ( ( (numer `  a )  /  (denom `  a )
)  -  ( sqr `  D ) ) ) )
2019breq1d 4182 . . . . . . . . 9  |-  ( a  e.  QQ  ->  (
( abs `  (
a  -  ( sqr `  D ) ) )  <  ( (denom `  a ) ^ -u 2
)  <->  ( abs `  (
( (numer `  a
)  /  (denom `  a ) )  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) )
215, 20syl 16 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (
( abs `  (
a  -  ( sqr `  D ) ) )  <  ( (denom `  a ) ^ -u 2
)  <->  ( abs `  (
( (numer `  a
)  /  (denom `  a ) )  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) )
2216, 21mpbid 202 . . . . . . 7  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  ( abs `  ( ( (numer `  a )  /  (denom `  a ) )  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) )
23 pellexlem2 26783 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  ( abs `  (
( (numer `  a
)  /  (denom `  a ) )  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) )  ->  ( abs `  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
2412, 8, 10, 22, 23syl31anc 1187 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )
2511, 15, 24jca32 522 . . . . 5  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )  ->  (
( (numer `  a
)  e.  NN  /\  (denom `  a )  e.  NN )  /\  (
( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
2625ex 424 . . . 4  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( a  e.  QQ  /\  (
0  <  a  /\  ( abs `  ( a  -  ( sqr `  D
) ) )  < 
( (denom `  a
) ^ -u 2
) ) )  -> 
( ( (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  (
( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
27 breq2 4176 . . . . . 6  |-  ( x  =  a  ->  (
0  <  x  <->  0  <  a ) )
28 oveq1 6047 . . . . . . . 8  |-  ( x  =  a  ->  (
x  -  ( sqr `  D ) )  =  ( a  -  ( sqr `  D ) ) )
2928fveq2d 5691 . . . . . . 7  |-  ( x  =  a  ->  ( abs `  ( x  -  ( sqr `  D ) ) )  =  ( abs `  ( a  -  ( sqr `  D
) ) ) )
30 fveq2 5687 . . . . . . . 8  |-  ( x  =  a  ->  (denom `  x )  =  (denom `  a ) )
3130oveq1d 6055 . . . . . . 7  |-  ( x  =  a  ->  (
(denom `  x ) ^ -u 2 )  =  ( (denom `  a
) ^ -u 2
) )
3229, 31breq12d 4185 . . . . . 6  |-  ( x  =  a  ->  (
( abs `  (
x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
)  <->  ( abs `  (
a  -  ( sqr `  D ) ) )  <  ( (denom `  a ) ^ -u 2
) ) )
3327, 32anbi12d 692 . . . . 5  |-  ( x  =  a  ->  (
( 0  <  x  /\  ( abs `  (
x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) )  <->  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )
3433elrab 3052 . . . 4  |-  ( a  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  <->  ( a  e.  QQ  /\  ( 0  <  a  /\  ( abs `  ( a  -  ( sqr `  D ) ) )  <  (
(denom `  a ) ^ -u 2 ) ) ) )
35 fvex 5701 . . . . 5  |-  (numer `  a )  e.  _V
36 fvex 5701 . . . . 5  |-  (denom `  a )  e.  _V
37 eleq1 2464 . . . . . . 7  |-  ( y  =  (numer `  a
)  ->  ( y  e.  NN  <->  (numer `  a )  e.  NN ) )
3837anbi1d 686 . . . . . 6  |-  ( y  =  (numer `  a
)  ->  ( (
y  e.  NN  /\  z  e.  NN )  <->  ( (numer `  a )  e.  NN  /\  z  e.  NN ) ) )
39 oveq1 6047 . . . . . . . . 9  |-  ( y  =  (numer `  a
)  ->  ( y ^ 2 )  =  ( (numer `  a
) ^ 2 ) )
4039oveq1d 6055 . . . . . . . 8  |-  ( y  =  (numer `  a
)  ->  ( (
y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )
4140neeq1d 2580 . . . . . . 7  |-  ( y  =  (numer `  a
)  ->  ( (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =/=  0  <->  ( (
(numer `  a ) ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0
) )
4240fveq2d 5691 . . . . . . . 8  |-  ( y  =  (numer `  a
)  ->  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  =  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) ) )
4342breq1d 4182 . . . . . . 7  |-  ( y  =  (numer `  a
)  ->  ( ( abs `  ( ( y ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) ) )  < 
( 1  +  ( 2  x.  ( sqr `  D ) ) )  <-> 
( abs `  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )
4441, 43anbi12d 692 . . . . . 6  |-  ( y  =  (numer `  a
)  ->  ( (
( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( y ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  <-> 
( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )
4538, 44anbi12d 692 . . . . 5  |-  ( y  =  (numer `  a
)  ->  ( (
( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  <->  ( ( (numer `  a )  e.  NN  /\  z  e.  NN )  /\  ( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
46 eleq1 2464 . . . . . . 7  |-  ( z  =  (denom `  a
)  ->  ( z  e.  NN  <->  (denom `  a )  e.  NN ) )
4746anbi2d 685 . . . . . 6  |-  ( z  =  (denom `  a
)  ->  ( (
(numer `  a )  e.  NN  /\  z  e.  NN )  <->  ( (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN ) ) )
48 oveq1 6047 . . . . . . . . . 10  |-  ( z  =  (denom `  a
)  ->  ( z ^ 2 )  =  ( (denom `  a
) ^ 2 ) )
4948oveq2d 6056 . . . . . . . . 9  |-  ( z  =  (denom `  a
)  ->  ( D  x.  ( z ^ 2 ) )  =  ( D  x.  ( (denom `  a ) ^ 2 ) ) )
5049oveq2d 6056 . . . . . . . 8  |-  ( z  =  (denom `  a
)  ->  ( (
(numer `  a ) ^ 2 )  -  ( D  x.  (
z ^ 2 ) ) )  =  ( ( (numer `  a
) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )
5150neeq1d 2580 . . . . . . 7  |-  ( z  =  (denom `  a
)  ->  ( (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  <->  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0 ) )
5250fveq2d 5691 . . . . . . . 8  |-  ( z  =  (denom `  a
)  ->  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  =  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) ) )
5352breq1d 4182 . . . . . . 7  |-  ( z  =  (denom `  a
)  ->  ( ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) )  <->  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) )
5451, 53anbi12d 692 . . . . . 6  |-  ( z  =  (denom `  a
)  ->  ( (
( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )  <-> 
( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) )
5547, 54anbi12d 692 . . . . 5  |-  ( z  =  (denom `  a
)  ->  ( (
( (numer `  a
)  e.  NN  /\  z  e.  NN )  /\  ( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( z ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) ) )  <->  ( ( (numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  (
( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( (numer `  a ) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) ) ) ) )
5635, 36, 45, 55opelopab 4436 . . . 4  |-  ( <.
(numer `  a ) ,  (denom `  a ) >.  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  <->  ( (
(numer `  a )  e.  NN  /\  (denom `  a )  e.  NN )  /\  ( ( ( (numer `  a ) ^ 2 )  -  ( D  x.  (
(denom `  a ) ^ 2 ) ) )  =/=  0  /\  ( abs `  (
( (numer `  a
) ^ 2 )  -  ( D  x.  ( (denom `  a ) ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) )
5726, 34, 563imtr4g 262 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  ->  <.
(numer `  a ) ,  (denom `  a ) >.  e.  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } ) )
58 ssrab2 3388 . . . . . 6  |-  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  C_  QQ
59 simprl 733 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
a  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } )
6058, 59sseldi 3306 . . . . 5  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
a  e.  QQ )
61 simprr 734 . . . . . 6  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } )
6258, 61sseldi 3306 . . . . 5  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
b  e.  QQ )
6335, 36opth 4395 . . . . . . 7  |-  ( <.
(numer `  a ) ,  (denom `  a ) >.  =  <. (numer `  b
) ,  (denom `  b ) >.  <->  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )
64 simprl 733 . . . . . . . . . 10  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  (numer `  a
)  =  (numer `  b ) )
65 simprr 734 . . . . . . . . . 10  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  (denom `  a
)  =  (denom `  b ) )
6664, 65oveq12d 6058 . . . . . . . . 9  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  ( (numer `  a )  /  (denom `  a ) )  =  ( (numer `  b
)  /  (denom `  b ) ) )
67 simpll 731 . . . . . . . . . 10  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  a  e.  QQ )
6867, 17syl 16 . . . . . . . . 9  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  a  =  ( (numer `  a )  /  (denom `  a )
) )
69 simplr 732 . . . . . . . . . 10  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  b  e.  QQ )
70 qeqnumdivden 13093 . . . . . . . . . 10  |-  ( b  e.  QQ  ->  b  =  ( (numer `  b )  /  (denom `  b ) ) )
7169, 70syl 16 . . . . . . . . 9  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  b  =  ( (numer `  b )  /  (denom `  b )
) )
7266, 68, 713eqtr4d 2446 . . . . . . . 8  |-  ( ( ( a  e.  QQ  /\  b  e.  QQ )  /\  ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) ) )  ->  a  =  b )
7372ex 424 . . . . . . 7  |-  ( ( a  e.  QQ  /\  b  e.  QQ )  ->  ( ( (numer `  a )  =  (numer `  b )  /\  (denom `  a )  =  (denom `  b ) )  -> 
a  =  b ) )
7463, 73syl5bi 209 . . . . . 6  |-  ( ( a  e.  QQ  /\  b  e.  QQ )  ->  ( <. (numer `  a
) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >.  ->  a  =  b ) )
75 fveq2 5687 . . . . . . 7  |-  ( a  =  b  ->  (numer `  a )  =  (numer `  b ) )
76 fveq2 5687 . . . . . . 7  |-  ( a  =  b  ->  (denom `  a )  =  (denom `  b ) )
7775, 76opeq12d 3952 . . . . . 6  |-  ( a  =  b  ->  <. (numer `  a ) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >. )
7874, 77impbid1 195 . . . . 5  |-  ( ( a  e.  QQ  /\  b  e.  QQ )  ->  ( <. (numer `  a
) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >.  <->  a  =  b ) )
7960, 62, 78syl2anc 643 . . . 4  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  ( a  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  /\  b  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) } ) )  -> 
( <. (numer `  a
) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >.  <->  a  =  b ) )
8079ex 424 . . 3  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( ( a  e.  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  /\  b  e. 
{ x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) } )  ->  ( <. (numer `  a ) ,  (denom `  a ) >.  =  <. (numer `  b ) ,  (denom `  b ) >.  <->  a  =  b ) ) )
8157, 80dom2d 7107 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) }  e.  _V  ->  { x  e.  QQ  |  ( 0  < 
x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  ( (denom `  x ) ^ -u 2
) ) }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } ) )
824, 81mpi 17 1  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  { x  e.  QQ  |  ( 0  <  x  /\  ( abs `  ( x  -  ( sqr `  D ) ) )  <  (
(denom `  x ) ^ -u 2 ) ) }  ~<_  { <. y ,  z >.  |  ( ( y  e.  NN  /\  z  e.  NN )  /\  ( ( ( y ^ 2 )  -  ( D  x.  ( z ^ 2 ) ) )  =/=  0  /\  ( abs `  ( ( y ^
2 )  -  ( D  x.  ( z ^ 2 ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) ) ) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   {crab 2670   _Vcvv 2916   <.cop 3777   class class class wbr 4172   {copab 4225    X. cxp 4835   ` cfv 5413  (class class class)co 6040    ~<_ cdom 7066   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    < clt 9076    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   QQcq 10530   ^cexp 11337   sqrcsqr 11993   abscabs 11994  numercnumer 13080  denomcdenom 13081
This theorem is referenced by:  pellexlem4  26785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-numer 13082  df-denom 13083
  Copyright terms: Public domain W3C validator