Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem2 Structured version   Unicode version

Theorem pellexlem2 29171
Description: Lemma for pellex 29176. Arithmetical core of pellexlem3, norm upper bound. (Contributed by Stefan O'Rear, 14-Sep-2014.)
Assertion
Ref Expression
pellexlem2  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )

Proof of Theorem pellexlem2
StepHypRef Expression
1 simpl3 993 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  B  e.  NN )
21nnred 10337 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  B  e.  RR )
32resqcld 12034 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( B ^ 2 )  e.  RR )
42sqge0d 12035 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <_  ( B ^ 2 ) )
53, 4absidd 12909 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  ( B ^ 2 ) )  =  ( B ^
2 ) )
65eqcomd 2448 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( B ^ 2 )  =  ( abs `  ( B ^ 2 ) ) )
76oveq2d 6107 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( abs `  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) ) )  /  ( B ^ 2 ) )  =  ( ( abs `  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  /  ( abs `  ( B ^
2 ) ) ) )
8 simpl2 992 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  A  e.  NN )
98nncnd 10338 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  A  e.  CC )
109sqcld 12006 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( A ^ 2 )  e.  CC )
11 simpl1 991 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  D  e.  NN )
1211nncnd 10338 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  D  e.  CC )
131nncnd 10338 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  B  e.  CC )
1413sqcld 12006 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( B ^ 2 )  e.  CC )
1512, 14mulcld 9406 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( D  x.  ( B ^ 2 ) )  e.  CC )
1610, 15subcld 9719 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  e.  CC )
171nnne0d 10366 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  B  =/=  0 )
18 sqne0 11932 . . . . . . . 8  |-  ( B  e.  CC  ->  (
( B ^ 2 )  =/=  0  <->  B  =/=  0 ) )
1918biimpar 485 . . . . . . 7  |-  ( ( B  e.  CC  /\  B  =/=  0 )  -> 
( B ^ 2 )  =/=  0 )
2013, 17, 19syl2anc 661 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( B ^ 2 )  =/=  0 )
2116, 14, 20absdivd 12941 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  /  ( B ^ 2 ) ) )  =  ( ( abs `  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  / 
( abs `  ( B ^ 2 ) ) ) )
227, 21eqtr4d 2478 . . . 4  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( abs `  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) ) )  /  ( B ^ 2 ) )  =  ( abs `  (
( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  /  ( B ^ 2 ) ) ) )
2322oveq2d 6107 . . 3  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
( abs `  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) ) )  /  ( B ^ 2 ) ) )  =  ( ( B ^ 2 )  x.  ( abs `  (
( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  /  ( B ^ 2 ) ) ) ) )
2416abscld 12922 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) ) )  e.  RR )
2524recnd 9412 . . . 4  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) ) )  e.  CC )
2625, 14, 20divcan2d 10109 . . 3  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
( abs `  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) ) )  /  ( B ^ 2 ) ) )  =  ( abs `  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) ) ) )
2710, 15, 14, 20divsubdird 10146 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  /  ( B ^ 2 ) )  =  ( ( ( A ^ 2 )  /  ( B ^
2 ) )  -  ( ( D  x.  ( B ^ 2 ) )  /  ( B ^ 2 ) ) ) )
289, 13, 17sqdivd 12021 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( A  /  B ) ^ 2 )  =  ( ( A ^ 2 )  /  ( B ^
2 ) ) )
2928eqcomd 2448 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( A ^
2 )  /  ( B ^ 2 ) )  =  ( ( A  /  B ) ^
2 ) )
3011nnred 10337 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  D  e.  RR )
3111nnnn0d 10636 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  D  e.  NN0 )
3231nn0ge0d 10639 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <_  D )
33 remsqsqr 12746 . . . . . . . . 9  |-  ( ( D  e.  RR  /\  0  <_  D )  -> 
( ( sqr `  D
)  x.  ( sqr `  D ) )  =  D )
3430, 32, 33syl2anc 661 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( sqr `  D
)  x.  ( sqr `  D ) )  =  D )
3530, 32resqrcld 12904 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( sqr `  D
)  e.  RR )
3635recnd 9412 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( sqr `  D
)  e.  CC )
3736sqvald 12005 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( sqr `  D
) ^ 2 )  =  ( ( sqr `  D )  x.  ( sqr `  D ) ) )
3812, 14, 20divcan4d 10113 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( D  x.  ( B ^ 2 ) )  /  ( B ^ 2 ) )  =  D )
3934, 37, 383eqtr4rd 2486 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( D  x.  ( B ^ 2 ) )  /  ( B ^ 2 ) )  =  ( ( sqr `  D ) ^ 2 ) )
4029, 39oveq12d 6109 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( A ^ 2 )  / 
( B ^ 2 ) )  -  (
( D  x.  ( B ^ 2 ) )  /  ( B ^
2 ) ) )  =  ( ( ( A  /  B ) ^ 2 )  -  ( ( sqr `  D
) ^ 2 ) ) )
419, 13, 17divcld 10107 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( A  /  B
)  e.  CC )
42 subsq 11973 . . . . . . . 8  |-  ( ( ( A  /  B
)  e.  CC  /\  ( sqr `  D )  e.  CC )  -> 
( ( ( A  /  B ) ^
2 )  -  (
( sqr `  D
) ^ 2 ) )  =  ( ( ( A  /  B
)  +  ( sqr `  D ) )  x.  ( ( A  /  B )  -  ( sqr `  D ) ) ) )
4341, 36, 42syl2anc 661 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( A  /  B ) ^
2 )  -  (
( sqr `  D
) ^ 2 ) )  =  ( ( ( A  /  B
)  +  ( sqr `  D ) )  x.  ( ( A  /  B )  -  ( sqr `  D ) ) ) )
4441, 36addcld 9405 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( A  /  B )  +  ( sqr `  D ) )  e.  CC )
458nnred 10337 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  A  e.  RR )
4645, 1nndivred 10370 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( A  /  B
)  e.  RR )
4746, 35resubcld 9776 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( A  /  B )  -  ( sqr `  D ) )  e.  RR )
4847recnd 9412 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( A  /  B )  -  ( sqr `  D ) )  e.  CC )
4944, 48mulcomd 9407 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( A  /  B )  +  ( sqr `  D
) )  x.  (
( A  /  B
)  -  ( sqr `  D ) ) )  =  ( ( ( A  /  B )  -  ( sqr `  D
) )  x.  (
( A  /  B
)  +  ( sqr `  D ) ) ) )
5043, 49eqtrd 2475 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( A  /  B ) ^
2 )  -  (
( sqr `  D
) ^ 2 ) )  =  ( ( ( A  /  B
)  -  ( sqr `  D ) )  x.  ( ( A  /  B )  +  ( sqr `  D ) ) ) )
5127, 40, 503eqtrd 2479 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  /  ( B ^ 2 ) )  =  ( ( ( A  /  B )  -  ( sqr `  D
) )  x.  (
( A  /  B
)  +  ( sqr `  D ) ) ) )
5251fveq2d 5695 . . . 4  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  /  ( B ^ 2 ) ) )  =  ( abs `  ( ( ( A  /  B )  -  ( sqr `  D ) )  x.  ( ( A  /  B )  +  ( sqr `  D
) ) ) ) )
5352oveq2d 6107 . . 3  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  ( abs `  ( ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  /  ( B ^ 2 ) ) ) )  =  ( ( B ^ 2 )  x.  ( abs `  ( ( ( A  /  B )  -  ( sqr `  D ) )  x.  ( ( A  /  B )  +  ( sqr `  D
) ) ) ) ) )
5423, 26, 533eqtr3d 2483 . 2  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) ) )  =  ( ( B ^ 2 )  x.  ( abs `  (
( ( A  /  B )  -  ( sqr `  D ) )  x.  ( ( A  /  B )  +  ( sqr `  D
) ) ) ) ) )
5548, 44absmuld 12940 . . . 4  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( ( A  /  B )  -  ( sqr `  D ) )  x.  ( ( A  /  B )  +  ( sqr `  D
) ) ) )  =  ( ( abs `  ( ( A  /  B )  -  ( sqr `  D ) ) )  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) )
5655oveq2d 6107 . . 3  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  ( abs `  ( ( ( A  /  B )  -  ( sqr `  D
) )  x.  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )  =  ( ( B ^ 2 )  x.  ( ( abs `  ( ( A  /  B )  -  ( sqr `  D
) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) ) )
5748abscld 12922 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  e.  RR )
5844abscld 12922 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) )  e.  RR )
5957, 58remulcld 9414 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) )  e.  RR )
603, 59remulcld 9414 . . . 4  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )  e.  RR )
61 2nn0 10596 . . . . . . . . 9  |-  2  e.  NN0
6261nn0negzi 10684 . . . . . . . 8  |-  -u 2  e.  ZZ
6362a1i 11 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  ->  -u 2  e.  ZZ )
642, 17, 63reexpclzd 12033 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( B ^ -u 2
)  e.  RR )
6564, 58remulcld 9414 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^ -u 2 )  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) ) )  e.  RR )
663, 65remulcld 9414 . . . 4  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) )  e.  RR )
67 1re 9385 . . . . . 6  |-  1  e.  RR
6867a1i 11 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
1  e.  RR )
69 2re 10391 . . . . . . 7  |-  2  e.  RR
7069a1i 11 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
2  e.  RR )
7170, 35remulcld 9414 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( 2  x.  ( sqr `  D ) )  e.  RR )
7268, 71readdcld 9413 . . . 4  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( 1  +  ( 2  x.  ( sqr `  D ) ) )  e.  RR )
73 simpr 461 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )
748nngt0d 10365 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <  A )
751nngt0d 10365 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <  B )
7645, 2, 74, 75divgt0d 10268 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <  ( A  /  B ) )
7711nngt0d 10365 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <  D )
78 sqrgt0 12748 . . . . . . . . . . 11  |-  ( ( D  e.  RR  /\  0  <  D )  -> 
0  <  ( sqr `  D ) )
7930, 77, 78syl2anc 661 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <  ( sqr `  D ) )
8046, 35, 76, 79addgt0d 9914 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <  ( ( A  /  B )  +  ( sqr `  D
) ) )
8180gt0ne0d 9904 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( A  /  B )  +  ( sqr `  D ) )  =/=  0 )
82 absgt0 12812 . . . . . . . . 9  |-  ( ( ( A  /  B
)  +  ( sqr `  D ) )  e.  CC  ->  ( (
( A  /  B
)  +  ( sqr `  D ) )  =/=  0  <->  0  <  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) ) ) )
8382biimpa 484 . . . . . . . 8  |-  ( ( ( ( A  /  B )  +  ( sqr `  D ) )  e.  CC  /\  ( ( A  /  B )  +  ( sqr `  D ) )  =/=  0 )  ->  0  <  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) ) )
8444, 81, 83syl2anc 661 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) )
85 ltmul1 10179 . . . . . . 7  |-  ( ( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  e.  RR  /\  ( B ^ -u 2 )  e.  RR  /\  (
( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) )  e.  RR  /\  0  <  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )  ->  (
( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 )  <->  ( ( abs `  ( ( A  /  B )  -  ( sqr `  D ) ) )  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) ) )  <  ( ( B ^ -u 2 )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) ) )
8657, 64, 58, 84, 85syl112anc 1222 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 )  <->  ( ( abs `  ( ( A  /  B )  -  ( sqr `  D ) ) )  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) ) )  <  ( ( B ^ -u 2 )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) ) )
8773, 86mpbid 210 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) )  <  ( ( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) )
882, 17sqgt0d 12036 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <  ( B ^ 2 ) )
89 ltmul2 10180 . . . . . 6  |-  ( ( ( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) )  e.  RR  /\  ( ( B ^ -u 2 )  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) ) )  e.  RR  /\  (
( B ^ 2 )  e.  RR  /\  0  <  ( B ^
2 ) ) )  ->  ( ( ( abs `  ( ( A  /  B )  -  ( sqr `  D
) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) )  <  ( ( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) )  <->  ( ( B ^ 2 )  x.  ( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )  <  (
( B ^ 2 )  x.  ( ( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) ) ) )
9059, 65, 3, 88, 89syl112anc 1222 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( abs `  ( ( A  /  B )  -  ( sqr `  D ) ) )  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) )  < 
( ( B ^ -u 2 )  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) ) )  <-> 
( ( B ^
2 )  x.  (
( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )  <  (
( B ^ 2 )  x.  ( ( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) ) ) )
9187, 90mpbid 210 . . . 4  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )  <  (
( B ^ 2 )  x.  ( ( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) ) )
9213, 17, 63expclzd 12013 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( B ^ -u 2
)  e.  CC )
9358recnd 9412 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) )  e.  CC )
94 mulass 9370 . . . . . . . 8  |-  ( ( ( B ^ 2 )  e.  CC  /\  ( B ^ -u 2
)  e.  CC  /\  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) )  e.  CC )  ->  (
( ( B ^
2 )  x.  ( B ^ -u 2 ) )  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) )  =  ( ( B ^
2 )  x.  (
( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) ) )
9594eqcomd 2448 . . . . . . 7  |-  ( ( ( B ^ 2 )  e.  CC  /\  ( B ^ -u 2
)  e.  CC  /\  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) )  e.  CC )  ->  (
( B ^ 2 )  x.  ( ( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) )  =  ( ( ( B ^ 2 )  x.  ( B ^ -u 2 ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )
9614, 92, 93, 95syl3anc 1218 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) )  =  ( ( ( B ^ 2 )  x.  ( B ^ -u 2 ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )
97 expneg 11873 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  2  e.  NN0 )  -> 
( B ^ -u 2
)  =  ( 1  /  ( B ^
2 ) ) )
9813, 61, 97sylancl 662 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( B ^ -u 2
)  =  ( 1  /  ( B ^
2 ) ) )
9998oveq2d 6107 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  ( B ^ -u 2 ) )  =  ( ( B ^ 2 )  x.  ( 1  / 
( B ^ 2 ) ) ) )
10014, 20recidd 10102 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
1  /  ( B ^ 2 ) ) )  =  1 )
10199, 100eqtrd 2475 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  ( B ^ -u 2 ) )  =  1 )
102101oveq1d 6106 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( B ^ 2 )  x.  ( B ^ -u 2
) )  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) ) )  =  ( 1  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )
10393mulid2d 9404 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( 1  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D
) ) ) )  =  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) )
10496, 102, 1033eqtrd 2479 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) )  =  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) )
10541, 36addcomd 9571 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( A  /  B )  +  ( sqr `  D ) )  =  ( ( sqr `  D )  +  ( A  /  B ) ) )
106 ppncan 9651 . . . . . . . . . 10  |-  ( ( ( sqr `  D
)  e.  CC  /\  ( sqr `  D )  e.  CC  /\  ( A  /  B )  e.  CC )  ->  (
( ( sqr `  D
)  +  ( sqr `  D ) )  +  ( ( A  /  B )  -  ( sqr `  D ) ) )  =  ( ( sqr `  D )  +  ( A  /  B ) ) )
107106eqcomd 2448 . . . . . . . . 9  |-  ( ( ( sqr `  D
)  e.  CC  /\  ( sqr `  D )  e.  CC  /\  ( A  /  B )  e.  CC )  ->  (
( sqr `  D
)  +  ( A  /  B ) )  =  ( ( ( sqr `  D )  +  ( sqr `  D
) )  +  ( ( A  /  B
)  -  ( sqr `  D ) ) ) )
10836, 36, 41, 107syl3anc 1218 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( sqr `  D
)  +  ( A  /  B ) )  =  ( ( ( sqr `  D )  +  ( sqr `  D
) )  +  ( ( A  /  B
)  -  ( sqr `  D ) ) ) )
10936, 36addcld 9405 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( sqr `  D
)  +  ( sqr `  D ) )  e.  CC )
110109, 48addcomd 9571 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( sqr `  D )  +  ( sqr `  D ) )  +  ( ( A  /  B )  -  ( sqr `  D
) ) )  =  ( ( ( A  /  B )  -  ( sqr `  D ) )  +  ( ( sqr `  D )  +  ( sqr `  D
) ) ) )
111 2times 10440 . . . . . . . . . . . 12  |-  ( ( sqr `  D )  e.  CC  ->  (
2  x.  ( sqr `  D ) )  =  ( ( sqr `  D
)  +  ( sqr `  D ) ) )
112111eqcomd 2448 . . . . . . . . . . 11  |-  ( ( sqr `  D )  e.  CC  ->  (
( sqr `  D
)  +  ( sqr `  D ) )  =  ( 2  x.  ( sqr `  D ) ) )
11336, 112syl 16 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( sqr `  D
)  +  ( sqr `  D ) )  =  ( 2  x.  ( sqr `  D ) ) )
114113oveq2d 6107 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( A  /  B )  -  ( sqr `  D ) )  +  ( ( sqr `  D )  +  ( sqr `  D
) ) )  =  ( ( ( A  /  B )  -  ( sqr `  D ) )  +  ( 2  x.  ( sqr `  D
) ) ) )
115110, 114eqtrd 2475 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( sqr `  D )  +  ( sqr `  D ) )  +  ( ( A  /  B )  -  ( sqr `  D
) ) )  =  ( ( ( A  /  B )  -  ( sqr `  D ) )  +  ( 2  x.  ( sqr `  D
) ) ) )
116105, 108, 1153eqtrd 2479 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( A  /  B )  +  ( sqr `  D ) )  =  ( ( ( A  /  B
)  -  ( sqr `  D ) )  +  ( 2  x.  ( sqr `  D ) ) ) )
117116fveq2d 5695 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) )  =  ( abs `  (
( ( A  /  B )  -  ( sqr `  D ) )  +  ( 2  x.  ( sqr `  D
) ) ) ) )
11847, 71readdcld 9413 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( A  /  B )  -  ( sqr `  D ) )  +  ( 2  x.  ( sqr `  D
) ) )  e.  RR )
119118recnd 9412 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( ( A  /  B )  -  ( sqr `  D ) )  +  ( 2  x.  ( sqr `  D
) ) )  e.  CC )
120119abscld 12922 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( ( A  /  B )  -  ( sqr `  D ) )  +  ( 2  x.  ( sqr `  D
) ) ) )  e.  RR )
12171recnd 9412 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( 2  x.  ( sqr `  D ) )  e.  CC )
122121abscld 12922 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
2  x.  ( sqr `  D ) ) )  e.  RR )
12357, 122readdcld 9413 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  +  ( abs `  (
2  x.  ( sqr `  D ) ) ) )  e.  RR )
12448, 121abstrid 12942 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( ( A  /  B )  -  ( sqr `  D ) )  +  ( 2  x.  ( sqr `  D
) ) ) )  <_  ( ( abs `  ( ( A  /  B )  -  ( sqr `  D ) ) )  +  ( abs `  ( 2  x.  ( sqr `  D ) ) ) ) )
125 0le2 10412 . . . . . . . . . . . 12  |-  0  <_  2
126125a1i 11 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <_  2 )
12730, 32sqrge0d 12907 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <_  ( sqr `  D ) )
12870, 35, 126, 127mulge0d 9916 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <_  ( 2  x.  ( sqr `  D
) ) )
12971, 128absidd 12909 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
2  x.  ( sqr `  D ) ) )  =  ( 2  x.  ( sqr `  D
) ) )
130129oveq2d 6107 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  +  ( abs `  (
2  x.  ( sqr `  D ) ) ) )  =  ( ( abs `  ( ( A  /  B )  -  ( sqr `  D
) ) )  +  ( 2  x.  ( sqr `  D ) ) ) )
1311nnsqcld 12028 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( B ^ 2 )  e.  NN )
132131nnge1d 10364 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
1  <_  ( B ^ 2 ) )
133 0lt1 9862 . . . . . . . . . . . . . . . 16  |-  0  <  1
134133a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
0  <  1 )
135 lerec 10214 . . . . . . . . . . . . . . 15  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( ( B ^ 2 )  e.  RR  /\  0  < 
( B ^ 2 ) ) )  -> 
( 1  <_  ( B ^ 2 )  <->  ( 1  /  ( B ^
2 ) )  <_ 
( 1  /  1
) ) )
13668, 134, 3, 88, 135syl22anc 1219 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( 1  <_  ( B ^ 2 )  <->  ( 1  /  ( B ^
2 ) )  <_ 
( 1  /  1
) ) )
137132, 136mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( 1  /  ( B ^ 2 ) )  <_  ( 1  / 
1 ) )
138 1div1e1 10024 . . . . . . . . . . . . 13  |-  ( 1  /  1 )  =  1
139137, 138syl6breq 4331 . . . . . . . . . . . 12  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( 1  /  ( B ^ 2 ) )  <_  1 )
14098, 139eqbrtrd 4312 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( B ^ -u 2
)  <_  1 )
14157, 64, 68, 73, 140ltletrd 9531 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  1 )
14257, 68, 141ltled 9522 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <_  1 )
14357, 68, 71, 142leadd1dd 9953 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  +  ( 2  x.  ( sqr `  D
) ) )  <_ 
( 1  +  ( 2  x.  ( sqr `  D ) ) ) )
144130, 143eqbrtrd 4312 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  +  ( abs `  (
2  x.  ( sqr `  D ) ) ) )  <_  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )
145120, 123, 72, 124, 144letrd 9528 . . . . . 6  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( ( A  /  B )  -  ( sqr `  D ) )  +  ( 2  x.  ( sqr `  D
) ) ) )  <_  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )
146117, 145eqbrtrd 4312 . . . . 5  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) )  <_  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )
147104, 146eqbrtrd 4312 . . . 4  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
( B ^ -u 2
)  x.  ( abs `  ( ( A  /  B )  +  ( sqr `  D ) ) ) ) )  <_  ( 1  +  ( 2  x.  ( sqr `  D ) ) ) )
14860, 66, 72, 91, 147ltletrd 9531 . . 3  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  (
( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  x.  ( abs `  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
14956, 148eqbrtrd 4312 . 2  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( ( B ^
2 )  x.  ( abs `  ( ( ( A  /  B )  -  ( sqr `  D
) )  x.  (
( A  /  B
)  +  ( sqr `  D ) ) ) ) )  <  (
1  +  ( 2  x.  ( sqr `  D
) ) ) )
15054, 149eqbrtrd 4312 1  |-  ( ( ( D  e.  NN  /\  A  e.  NN  /\  B  e.  NN )  /\  ( abs `  (
( A  /  B
)  -  ( sqr `  D ) ) )  <  ( B ^ -u 2 ) )  -> 
( abs `  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) ) )  <  ( 1  +  ( 2  x.  ( sqr `  D
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   CCcc 9280   RRcr 9281   0cc0 9282   1c1 9283    + caddc 9285    x. cmul 9287    < clt 9418    <_ cle 9419    - cmin 9595   -ucneg 9596    / cdiv 9993   NNcn 10322   2c2 10371   NN0cn0 10579   ZZcz 10646   ^cexp 11865   sqrcsqr 12722   abscabs 12723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-en 7311  df-dom 7312  df-sdom 7313  df-sup 7691  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-n0 10580  df-z 10647  df-uz 10862  df-rp 10992  df-seq 11807  df-exp 11866  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725
This theorem is referenced by:  pellexlem3  29172
  Copyright terms: Public domain W3C validator