Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellex Structured version   Unicode version

Theorem pellex 30375
Description: Every Pell equation has a nontrivial solution. Theorem 62 in [vandenDries] p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellex  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 )
Distinct variable group:    x, D, y

Proof of Theorem pellex
Dummy variables  a 
b  c  d  e  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellexlem5 30373 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. a  e.  ZZ  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )
2 fzfi 12046 . . . . . . . . . 10  |-  ( 0 ... ( ( abs `  a )  -  1 ) )  e.  Fin
3 xpfi 7787 . . . . . . . . . 10  |-  ( ( ( 0 ... (
( abs `  a
)  -  1 ) )  e.  Fin  /\  ( 0 ... (
( abs `  a
)  -  1 ) )  e.  Fin )  ->  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  e. 
Fin )
42, 2, 3mp2an 672 . . . . . . . . 9  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  e.  Fin
5 isfinite 8065 . . . . . . . . 9  |-  ( ( ( 0 ... (
( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  e. 
Fin 
<->  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  om )
64, 5mpbi 208 . . . . . . . 8  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  ~<  om
7 nnenom 12054 . . . . . . . . 9  |-  NN  ~~  om
87ensymi 7562 . . . . . . . 8  |-  om  ~~  NN
9 sdomentr 7648 . . . . . . . 8  |-  ( ( ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  om  /\  om  ~~  NN )  ->  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  NN )
106, 8, 9mp2an 672 . . . . . . 7  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  ~<  NN
11 ensym 7561 . . . . . . . 8  |-  ( {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } 
~~  NN  ->  NN  ~~  {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )
1211ad2antll 728 . . . . . . 7  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  NN  ~~  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )
13 sdomentr 7648 . . . . . . 7  |-  ( ( ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  NN  /\  NN  ~~  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  ( (
0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )
1410, 12, 13sylancr 663 . . . . . 6  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  ( (
0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )
15 opabssxp 5072 . . . . . . . . . 10  |-  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  C_  ( NN  X.  NN )
1615sseli 3500 . . . . . . . . 9  |-  ( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  d  e.  ( NN  X.  NN ) )
17 simprrl 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 1st `  d )  e.  NN )
1817nnzd 10961 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 1st `  d )  e.  ZZ )
19 simpllr 758 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  a  e.  ZZ )
20 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  a  =/=  0 )
21 nnabscl 13117 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ZZ  /\  a  =/=  0 )  -> 
( abs `  a
)  e.  NN )
2219, 20, 21syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( abs `  a )  e.  NN )
23 zmodfz 11981 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  d
)  e.  ZZ  /\  ( abs `  a )  e.  NN )  -> 
( ( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2418, 22, 23syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
25 simprrr 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 2nd `  d )  e.  NN )
2625nnzd 10961 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 2nd `  d )  e.  ZZ )
27 zmodfz 11981 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  d
)  e.  ZZ  /\  ( abs `  a )  e.  NN )  -> 
( ( 2nd `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2826, 22, 27syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( 2nd `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2924, 28jca 532 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( ( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3029ex 434 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d
)  e.  NN  /\  ( 2nd `  d )  e.  NN ) )  ->  ( ( ( 1st `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a ) )  e.  ( 0 ... ( ( abs `  a
)  -  1 ) ) ) ) )
31 elxp7 6814 . . . . . . . . . 10  |-  ( d  e.  ( NN  X.  NN )  <->  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )
32 opelxp 5028 . . . . . . . . . 10  |-  ( <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  <->  ( (
( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3330, 31, 323imtr4g 270 . . . . . . . . 9  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  ( NN 
X.  NN )  ->  <. ( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) ) )
3416, 33syl5 32 . . . . . . . 8  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) ) )
3534imp 429 . . . . . . 7  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  e.  {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  <. ( ( 1st `  d )  mod  ( abs `  a
) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3635adantlrr 720 . . . . . 6  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  /\  d  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
37 fveq2 5864 . . . . . . . 8  |-  ( d  =  e  ->  ( 1st `  d )  =  ( 1st `  e
) )
3837oveq1d 6297 . . . . . . 7  |-  ( d  =  e  ->  (
( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) ) )
39 fveq2 5864 . . . . . . . 8  |-  ( d  =  e  ->  ( 2nd `  d )  =  ( 2nd `  e
) )
4039oveq1d 6297 . . . . . . 7  |-  ( d  =  e  ->  (
( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )
4138, 40opeq12d 4221 . . . . . 6  |-  ( d  =  e  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
4214, 36, 41fphpd 30354 . . . . 5  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )
43 eleq1 2539 . . . . . . . . . . . . . 14  |-  ( b  =  f  ->  (
b  e.  NN  <->  f  e.  NN ) )
44 eleq1 2539 . . . . . . . . . . . . . 14  |-  ( c  =  g  ->  (
c  e.  NN  <->  g  e.  NN ) )
4543, 44bi2anan9 871 . . . . . . . . . . . . 13  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( b  e.  NN  /\  c  e.  NN )  <->  ( f  e.  NN  /\  g  e.  NN ) ) )
46 oveq1 6289 . . . . . . . . . . . . . . 15  |-  ( b  =  f  ->  (
b ^ 2 )  =  ( f ^
2 ) )
47 oveq1 6289 . . . . . . . . . . . . . . . 16  |-  ( c  =  g  ->  (
c ^ 2 )  =  ( g ^
2 ) )
4847oveq2d 6298 . . . . . . . . . . . . . . 15  |-  ( c  =  g  ->  ( D  x.  ( c ^ 2 ) )  =  ( D  x.  ( g ^ 2 ) ) )
4946, 48oveqan12d 6301 . . . . . . . . . . . . . 14  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  ( ( f ^ 2 )  -  ( D  x.  ( g ^ 2 ) ) ) )
5049eqeq1d 2469 . . . . . . . . . . . . 13  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a  <-> 
( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) )
5145, 50anbi12d 710 . . . . . . . . . . . 12  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )  <->  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) ) )
5251cbvopabv 4516 . . . . . . . . . . 11  |-  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  =  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) }
5352eleq2i 2545 . . . . . . . . . 10  |-  ( e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  <->  e  e.  {
<. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) } )
5453biimpi 194 . . . . . . . . 9  |-  ( e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  e  e.  { <. f ,  g
>.  |  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) } )
55 elopab 4755 . . . . . . . . . . 11  |-  ( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  <->  E. b E. c ( d  = 
<. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )
56 elopab 4755 . . . . . . . . . . . . . 14  |-  ( e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  <->  E. f E. g ( e  = 
<. f ,  g >.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) ) )
57 simp3ll 1067 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  =  <. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) )  ->  b  e.  NN )
58573expb 1197 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  b  e.  NN )
59583ad2ant1 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  b  e.  NN )
60 simp3lr 1068 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  =  <. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) )  ->  c  e.  NN )
61603expb 1197 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  c  e.  NN )
62613ad2ant1 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  c  e.  NN )
63 simp1lr 1060 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  e.  ZZ )
64633adant1r 1221 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  e.  ZZ )
65 simp-4l 765 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  D  e.  NN )
66653ad2ant1 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  D  e.  NN )
67 simp-4r 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  -.  ( sqr `  D )  e.  QQ )
68673ad2ant1 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  -.  ( sqr `  D )  e.  QQ )
69 simp2ll 1063 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  f  e.  NN )
70693adant2l 1222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  f  e.  NN )
71 simp2lr 1064 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  g  e.  NN )
72713adant2l 1222 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  g  e.  NN )
73 simp2l 1022 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  e  =  <. f ,  g
>. )
74 simp1rl 1061 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  d  =  <. b ,  c
>. )
75 simp3l 1024 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  d  =/=  e )
76 simp3 998 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  d  =/=  e )
77 simp2 997 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  d  =  <. b ,  c >.
)
78 simp1 996 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  e  =  <. f ,  g >.
)
7976, 77, 783netr3d 2770 . . . . . . . . . . . . . . . . . . 19  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  <. b ,  c >.  =/=  <. f ,  g >. )
80 vex 3116 . . . . . . . . . . . . . . . . . . . . 21  |-  b  e. 
_V
81 vex 3116 . . . . . . . . . . . . . . . . . . . . 21  |-  c  e. 
_V
8280, 81opth 4721 . . . . . . . . . . . . . . . . . . . 20  |-  ( <.
b ,  c >.  =  <. f ,  g
>. 
<->  ( b  =  f  /\  c  =  g ) )
8382necon3abii 2727 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
b ,  c >.  =/=  <. f ,  g
>. 
<->  -.  ( b  =  f  /\  c  =  g ) )
8479, 83sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  -.  (
b  =  f  /\  c  =  g )
)
8573, 74, 75, 84syl3anc 1228 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  -.  ( b  =  f  /\  c  =  g ) )
86 simp1lr 1060 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  =/=  0 )
87 simp1rr 1062 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  /\  (
e  =  <. f ,  g >.  /\  (
( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) )  /\  (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )
88873adant1l 1220 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )
89 simp2rr 1066 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a )
90 simp3r 1025 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
91 simp3 998 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  <. ( ( 1st `  d )  mod  ( abs `  a
) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
92 ovex 6307 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  d )  mod  ( abs `  a
) )  e.  _V
93 ovex 6307 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  _V
9492, 93opth 4721 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. 
<->  ( ( ( 1st `  d )  mod  ( abs `  a ) )  =  ( ( 1st `  e )  mod  ( abs `  a ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a ) )  =  ( ( 2nd `  e )  mod  ( abs `  a ) ) ) )
9591, 94sylib 196 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )
96 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  d )  mod  ( abs `  a
) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) ) )
97 simpll 753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  d  =  <. b ,  c >.
)
9897fveq2d 5868 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  d )  =  ( 1st `  <. b ,  c >. )
)
9980, 81op1st 6789 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 1st `  <. b ,  c
>. )  =  b
10098, 99syl6eq 2524 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  d )  =  b )
101100oveq1d 6297 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  d )  mod  ( abs `  a
) )  =  ( b  mod  ( abs `  a ) ) )
102 simplr 754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  e  =  <. f ,  g >.
)
103102fveq2d 5868 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  e )  =  ( 1st `  <. f ,  g >. )
)
104 vex 3116 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  f  e. 
_V
105 vex 3116 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  g  e. 
_V
106104, 105op1st 6789 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 1st `  <. f ,  g
>. )  =  f
107103, 106syl6eq 2524 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  e )  =  f )
108107oveq1d 6297 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  e )  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) ) )
10996, 101, 1083eqtr3d 2516 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) ) )
110 simprr 756 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  d )  mod  ( abs `  a
) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )
11197fveq2d 5868 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  d )  =  ( 2nd `  <. b ,  c >. )
)
11280, 81op2nd 6790 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 2nd `  <. b ,  c
>. )  =  c
113111, 112syl6eq 2524 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  d )  =  c )
114113oveq1d 6297 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  d )  mod  ( abs `  a
) )  =  ( c  mod  ( abs `  a ) ) )
115102fveq2d 5868 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  e )  =  ( 2nd `  <. f ,  g >. )
)
116104, 105op2nd 6790 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 2nd `  <. f ,  g
>. )  =  g
117115, 116syl6eq 2524 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  e )  =  g )
118117oveq1d 6297 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  e )  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) )
119110, 114, 1183eqtr3d 2516 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) )
120109, 119jca 532 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) ) )
121120ex 434 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  ->  ( ( ( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )  ->  ( ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a
) ) ) ) )
1221213adant3 1016 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )  ->  ( ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a
) ) ) ) )
12395, 122mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) ) )
12474, 73, 90, 123syl3anc 1228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a
) )  /\  (
c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a ) ) ) )
125124simpld 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) ) )
126124simprd 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a ) ) )
12759, 62, 64, 66, 68, 70, 72, 85, 86, 88, 89, 125, 126pellexlem6 30374 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
1281273exp 1195 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( (
e  =  <. f ,  g >.  /\  (
( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) )  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
129128exlimdvv 1701 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( E. f E. g ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  ->  ( ( d  =/=  e  /\  <. ( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
13056, 129syl5bi 217 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( e  e.  { <. f ,  g
>.  |  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) }  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
131130ex 434 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
132131exlimdvv 1701 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  ( E. b E. c ( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
13355, 132syl5bi 217 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
134133impd 431 . . . . . . . . 9  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) }  /\  e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) } )  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
13554, 134sylan2i 655 . . . . . . . 8  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) }  /\  e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
136135rexlimdvv 2961 . . . . . . 7  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  ( E. d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) } E. e  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) )
137136imp 429 . . . . . 6  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
138137adantlrr 720 . . . . 5  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  /\  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
13942, 138mpdan 668 . . . 4  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
140139ex 434 . . 3  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  ->  ( ( a  =/=  0  /\  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } 
~~  NN )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 ) )
141140rexlimdva 2955 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( E. a  e.  ZZ  ( a  =/=  0  /\  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ~~  NN )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 ) )
1421, 141mpd 15 1  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   E.wrex 2815   _Vcvv 3113   <.cop 4033   class class class wbr 4447   {copab 4504    X. cxp 4997   ` cfv 5586  (class class class)co 6282   omcom 6678   1stc1st 6779   2ndc2nd 6780    ~~ cen 7510    ~< csdm 7512   Fincfn 7513   0cc0 9488   1c1 9489    x. cmul 9493    - cmin 9801   NNcn 10532   2c2 10581   ZZcz 10860   QQcq 11178   ...cfz 11668    mod cmo 11960   ^cexp 12130   sqrcsqrt 13025   abscabs 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-omul 7132  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-ico 11531  df-fz 11669  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-dvds 13844  df-gcd 14000  df-numer 14123  df-denom 14124
This theorem is referenced by:  pellqrex  30419
  Copyright terms: Public domain W3C validator