Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellex Structured version   Unicode version

Theorem pellex 30933
Description: Every Pell equation has a nontrivial solution. Theorem 62 in [vandenDries] p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellex  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 )
Distinct variable group:    x, D, y

Proof of Theorem pellex
Dummy variables  a 
b  c  d  e  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfi 12084 . . . . . . . 8  |-  ( 0 ... ( ( abs `  a )  -  1 ) )  e.  Fin
2 xpfi 7809 . . . . . . . 8  |-  ( ( ( 0 ... (
( abs `  a
)  -  1 ) )  e.  Fin  /\  ( 0 ... (
( abs `  a
)  -  1 ) )  e.  Fin )  ->  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  e. 
Fin )
31, 1, 2mp2an 672 . . . . . . 7  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  e.  Fin
4 isfinite 8086 . . . . . . 7  |-  ( ( ( 0 ... (
( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  e. 
Fin 
<->  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  om )
53, 4mpbi 208 . . . . . 6  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  ~<  om
6 nnenom 12092 . . . . . . 7  |-  NN  ~~  om
76ensymi 7584 . . . . . 6  |-  om  ~~  NN
8 sdomentr 7670 . . . . . 6  |-  ( ( ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  om  /\  om  ~~  NN )  ->  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  NN )
95, 7, 8mp2an 672 . . . . 5  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  ~<  NN
10 ensym 7583 . . . . . 6  |-  ( {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } 
~~  NN  ->  NN  ~~  {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )
1110ad2antll 728 . . . . 5  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  NN  ~~  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )
12 sdomentr 7670 . . . . 5  |-  ( ( ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  NN  /\  NN  ~~  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  ( (
0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )
139, 11, 12sylancr 663 . . . 4  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  ( (
0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )
14 opabssxp 5083 . . . . . . . 8  |-  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  C_  ( NN  X.  NN )
1514sseli 3495 . . . . . . 7  |-  ( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  d  e.  ( NN  X.  NN ) )
16 simprrl 765 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 1st `  d )  e.  NN )
1716nnzd 10989 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 1st `  d )  e.  ZZ )
18 simpllr 760 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  a  e.  ZZ )
19 simplr 755 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  a  =/=  0 )
20 nnabscl 13169 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  a  =/=  0 )  -> 
( abs `  a
)  e.  NN )
2118, 19, 20syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( abs `  a )  e.  NN )
22 zmodfz 12019 . . . . . . . . . . 11  |-  ( ( ( 1st `  d
)  e.  ZZ  /\  ( abs `  a )  e.  NN )  -> 
( ( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2317, 21, 22syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
24 simprrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 2nd `  d )  e.  NN )
2524nnzd 10989 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 2nd `  d )  e.  ZZ )
26 zmodfz 12019 . . . . . . . . . . 11  |-  ( ( ( 2nd `  d
)  e.  ZZ  /\  ( abs `  a )  e.  NN )  -> 
( ( 2nd `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2725, 21, 26syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( 2nd `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2823, 27jca 532 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( ( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
2928ex 434 . . . . . . . 8  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d
)  e.  NN  /\  ( 2nd `  d )  e.  NN ) )  ->  ( ( ( 1st `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a ) )  e.  ( 0 ... ( ( abs `  a
)  -  1 ) ) ) ) )
30 elxp7 6832 . . . . . . . 8  |-  ( d  e.  ( NN  X.  NN )  <->  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )
31 opelxp 5038 . . . . . . . 8  |-  ( <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  <->  ( (
( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3229, 30, 313imtr4g 270 . . . . . . 7  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  ( NN 
X.  NN )  ->  <. ( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) ) )
3315, 32syl5 32 . . . . . 6  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) ) )
3433imp 429 . . . . 5  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  e.  {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  <. ( ( 1st `  d )  mod  ( abs `  a
) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3534adantlrr 720 . . . 4  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  /\  d  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
36 fveq2 5872 . . . . . 6  |-  ( d  =  e  ->  ( 1st `  d )  =  ( 1st `  e
) )
3736oveq1d 6311 . . . . 5  |-  ( d  =  e  ->  (
( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) ) )
38 fveq2 5872 . . . . . 6  |-  ( d  =  e  ->  ( 2nd `  d )  =  ( 2nd `  e
) )
3938oveq1d 6311 . . . . 5  |-  ( d  =  e  ->  (
( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )
4037, 39opeq12d 4227 . . . 4  |-  ( d  =  e  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
4113, 35, 40fphpd 30912 . . 3  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )
42 eleq1 2529 . . . . . . . . . . . 12  |-  ( b  =  f  ->  (
b  e.  NN  <->  f  e.  NN ) )
43 eleq1 2529 . . . . . . . . . . . 12  |-  ( c  =  g  ->  (
c  e.  NN  <->  g  e.  NN ) )
4442, 43bi2anan9 873 . . . . . . . . . . 11  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( b  e.  NN  /\  c  e.  NN )  <->  ( f  e.  NN  /\  g  e.  NN ) ) )
45 oveq1 6303 . . . . . . . . . . . . 13  |-  ( b  =  f  ->  (
b ^ 2 )  =  ( f ^
2 ) )
46 oveq1 6303 . . . . . . . . . . . . . 14  |-  ( c  =  g  ->  (
c ^ 2 )  =  ( g ^
2 ) )
4746oveq2d 6312 . . . . . . . . . . . . 13  |-  ( c  =  g  ->  ( D  x.  ( c ^ 2 ) )  =  ( D  x.  ( g ^ 2 ) ) )
4845, 47oveqan12d 6315 . . . . . . . . . . . 12  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  ( ( f ^ 2 )  -  ( D  x.  ( g ^ 2 ) ) ) )
4948eqeq1d 2459 . . . . . . . . . . 11  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a  <-> 
( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) )
5044, 49anbi12d 710 . . . . . . . . . 10  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )  <->  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) ) )
5150cbvopabv 4526 . . . . . . . . 9  |-  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  =  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) }
5251eleq2i 2535 . . . . . . . 8  |-  ( e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  <->  e  e.  {
<. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) } )
5352biimpi 194 . . . . . . 7  |-  ( e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  e  e.  { <. f ,  g
>.  |  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) } )
54 elopab 4764 . . . . . . . . 9  |-  ( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  <->  E. b E. c ( d  = 
<. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )
55 elopab 4764 . . . . . . . . . . . 12  |-  ( e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  <->  E. f E. g ( e  = 
<. f ,  g >.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) ) )
56 simp3ll 1067 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  =  <. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) )  ->  b  e.  NN )
57563expb 1197 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  b  e.  NN )
58573ad2ant1 1017 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  b  e.  NN )
59 simp3lr 1068 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  =  <. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) )  ->  c  e.  NN )
60593expb 1197 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  c  e.  NN )
61603ad2ant1 1017 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  c  e.  NN )
62 simp1lr 1060 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  e.  ZZ )
63623adant1r 1221 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  e.  ZZ )
64 simp-4l 767 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  D  e.  NN )
65643ad2ant1 1017 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  D  e.  NN )
66 simp-4r 768 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  -.  ( sqr `  D )  e.  QQ )
67663ad2ant1 1017 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  -.  ( sqr `  D )  e.  QQ )
68 simp2ll 1063 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  f  e.  NN )
69683adant2l 1222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  f  e.  NN )
70 simp2lr 1064 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  g  e.  NN )
71703adant2l 1222 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  g  e.  NN )
72 simp2l 1022 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  e  =  <. f ,  g
>. )
73 simp1rl 1061 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  d  =  <. b ,  c
>. )
74 simp3l 1024 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  d  =/=  e )
75 simp3 998 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  d  =/=  e )
76 simp2 997 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  d  =  <. b ,  c >.
)
77 simp1 996 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  e  =  <. f ,  g >.
)
7875, 76, 773netr3d 2760 . . . . . . . . . . . . . . . . 17  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  <. b ,  c >.  =/=  <. f ,  g >. )
79 vex 3112 . . . . . . . . . . . . . . . . . . 19  |-  b  e. 
_V
80 vex 3112 . . . . . . . . . . . . . . . . . . 19  |-  c  e. 
_V
8179, 80opth 4730 . . . . . . . . . . . . . . . . . 18  |-  ( <.
b ,  c >.  =  <. f ,  g
>. 
<->  ( b  =  f  /\  c  =  g ) )
8281necon3abii 2717 . . . . . . . . . . . . . . . . 17  |-  ( <.
b ,  c >.  =/=  <. f ,  g
>. 
<->  -.  ( b  =  f  /\  c  =  g ) )
8378, 82sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  -.  (
b  =  f  /\  c  =  g )
)
8472, 73, 74, 83syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  -.  ( b  =  f  /\  c  =  g ) )
85 simp1lr 1060 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  =/=  0 )
86 simp1rr 1062 . . . . . . . . . . . . . . . 16  |-  ( ( ( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  /\  (
e  =  <. f ,  g >.  /\  (
( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) )  /\  (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )
87863adant1l 1220 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )
88 simp2rr 1066 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a )
89 simp3r 1025 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
90 simp3 998 . . . . . . . . . . . . . . . . . . 19  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  <. ( ( 1st `  d )  mod  ( abs `  a
) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
91 ovex 6324 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  d )  mod  ( abs `  a
) )  e.  _V
92 ovex 6324 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  _V
9391, 92opth 4730 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. 
<->  ( ( ( 1st `  d )  mod  ( abs `  a ) )  =  ( ( 1st `  e )  mod  ( abs `  a ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a ) )  =  ( ( 2nd `  e )  mod  ( abs `  a ) ) ) )
9490, 93sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )
95 simprl 756 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  d )  mod  ( abs `  a
) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) ) )
96 simpll 753 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  d  =  <. b ,  c >.
)
9796fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  d )  =  ( 1st `  <. b ,  c >. )
)
9879, 80op1st 6807 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1st `  <. b ,  c
>. )  =  b
9997, 98syl6eq 2514 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  d )  =  b )
10099oveq1d 6311 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  d )  mod  ( abs `  a
) )  =  ( b  mod  ( abs `  a ) ) )
101 simplr 755 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  e  =  <. f ,  g >.
)
102101fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  e )  =  ( 1st `  <. f ,  g >. )
)
103 vex 3112 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  f  e. 
_V
104 vex 3112 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  g  e. 
_V
105103, 104op1st 6807 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 1st `  <. f ,  g
>. )  =  f
106102, 105syl6eq 2514 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  e )  =  f )
107106oveq1d 6311 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  e )  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) ) )
10895, 100, 1073eqtr3d 2506 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) ) )
109 simprr 757 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  d )  mod  ( abs `  a
) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )
11096fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  d )  =  ( 2nd `  <. b ,  c >. )
)
11179, 80op2nd 6808 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2nd `  <. b ,  c
>. )  =  c
112110, 111syl6eq 2514 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  d )  =  c )
113112oveq1d 6311 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  d )  mod  ( abs `  a
) )  =  ( c  mod  ( abs `  a ) ) )
114101fveq2d 5876 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  e )  =  ( 2nd `  <. f ,  g >. )
)
115103, 104op2nd 6808 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 2nd `  <. f ,  g
>. )  =  g
116114, 115syl6eq 2514 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  e )  =  g )
117116oveq1d 6311 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  e )  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) )
118109, 113, 1173eqtr3d 2506 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) )
119108, 118jca 532 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) ) )
120119ex 434 . . . . . . . . . . . . . . . . . . 19  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  ->  ( ( ( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )  ->  ( ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a
) ) ) ) )
1211203adant3 1016 . . . . . . . . . . . . . . . . . 18  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )  ->  ( ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a
) ) ) ) )
12294, 121mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) ) )
12373, 72, 89, 122syl3anc 1228 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a
) )  /\  (
c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a ) ) ) )
124123simpld 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) ) )
125123simprd 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a ) ) )
12658, 61, 63, 65, 67, 69, 71, 84, 85, 87, 88, 124, 125pellexlem6 30932 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
1271263exp 1195 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( (
e  =  <. f ,  g >.  /\  (
( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) )  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
128127exlimdvv 1726 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( E. f E. g ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  ->  ( ( d  =/=  e  /\  <. ( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
12955, 128syl5bi 217 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( e  e.  { <. f ,  g
>.  |  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) }  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
130129ex 434 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
131130exlimdvv 1726 . . . . . . . . 9  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  ( E. b E. c ( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
13254, 131syl5bi 217 . . . . . . . 8  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
133132impd 431 . . . . . . 7  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) }  /\  e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) } )  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
13453, 133sylan2i 655 . . . . . 6  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) }  /\  e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
135134rexlimdvv 2955 . . . . 5  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  ( E. d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) } E. e  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) )
136135imp 429 . . . 4  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
137136adantlrr 720 . . 3  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  /\  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
13841, 137mpdan 668 . 2  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
139 pellexlem5 30931 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. a  e.  ZZ  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )
140138, 139r19.29a 2999 1  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   E.wrex 2808   _Vcvv 3109   <.cop 4038   class class class wbr 4456   {copab 4514    X. cxp 5006   ` cfv 5594  (class class class)co 6296   omcom 6699   1stc1st 6797   2ndc2nd 6798    ~~ cen 7532    ~< csdm 7534   Fincfn 7535   0cc0 9509   1c1 9510    x. cmul 9514    - cmin 9824   NNcn 10556   2c2 10606   ZZcz 10885   QQcq 11207   ...cfz 11697    mod cmo 11998   ^cexp 12168   sqrcsqrt 13077   abscabs 13078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-omul 7153  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-ico 11560  df-fz 11698  df-fl 11931  df-mod 11999  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-dvds 13998  df-gcd 14156  df-numer 14279  df-denom 14280
This theorem is referenced by:  pellqrex  30977
  Copyright terms: Public domain W3C validator