Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellex Structured version   Unicode version

Theorem pellex 29129
Description: Every Pell equation has a nontrivial solution. Theorem 62 in [vandenDries] p. 43. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
pellex  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 )
Distinct variable group:    x, D, y

Proof of Theorem pellex
Dummy variables  a 
b  c  d  e  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pellexlem5 29127 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. a  e.  ZZ  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )
2 fzfi 11786 . . . . . . . . . 10  |-  ( 0 ... ( ( abs `  a )  -  1 ) )  e.  Fin
3 xpfi 7575 . . . . . . . . . 10  |-  ( ( ( 0 ... (
( abs `  a
)  -  1 ) )  e.  Fin  /\  ( 0 ... (
( abs `  a
)  -  1 ) )  e.  Fin )  ->  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  e. 
Fin )
42, 2, 3mp2an 672 . . . . . . . . 9  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  e.  Fin
5 isfinite 7850 . . . . . . . . 9  |-  ( ( ( 0 ... (
( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  e. 
Fin 
<->  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  om )
64, 5mpbi 208 . . . . . . . 8  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  ~<  om
7 nnenom 11794 . . . . . . . . 9  |-  NN  ~~  om
87ensymi 7351 . . . . . . . 8  |-  om  ~~  NN
9 sdomentr 7437 . . . . . . . 8  |-  ( ( ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  om  /\  om  ~~  NN )  ->  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  NN )
106, 8, 9mp2an 672 . . . . . . 7  |-  ( ( 0 ... ( ( abs `  a )  -  1 ) )  X.  ( 0 ... ( ( abs `  a
)  -  1 ) ) )  ~<  NN
11 ensym 7350 . . . . . . . 8  |-  ( {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } 
~~  NN  ->  NN  ~~  {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )
1211ad2antll 728 . . . . . . 7  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  NN  ~~  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )
13 sdomentr 7437 . . . . . . 7  |-  ( ( ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  ~<  NN  /\  NN  ~~  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  ( (
0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )
1410, 12, 13sylancr 663 . . . . . 6  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  ( (
0 ... ( ( abs `  a )  -  1 ) )  X.  (
0 ... ( ( abs `  a )  -  1 ) ) )  ~<  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )
15 opabssxp 4906 . . . . . . . . . 10  |-  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  C_  ( NN  X.  NN )
1615sseli 3347 . . . . . . . . 9  |-  ( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  d  e.  ( NN  X.  NN ) )
17 simprrl 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 1st `  d )  e.  NN )
1817nnzd 10738 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 1st `  d )  e.  ZZ )
19 simpllr 758 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  a  e.  ZZ )
20 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  a  =/=  0 )
21 nnabscl 12805 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ZZ  /\  a  =/=  0 )  -> 
( abs `  a
)  e.  NN )
2219, 20, 21syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( abs `  a )  e.  NN )
23 zmodfz 11721 . . . . . . . . . . . . 13  |-  ( ( ( 1st `  d
)  e.  ZZ  /\  ( abs `  a )  e.  NN )  -> 
( ( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2418, 22, 23syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
25 simprrr 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 2nd `  d )  e.  NN )
2625nnzd 10738 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  ( 2nd `  d )  e.  ZZ )
27 zmodfz 11721 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  d
)  e.  ZZ  /\  ( abs `  a )  e.  NN )  -> 
( ( 2nd `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2826, 22, 27syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( 2nd `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) ) )
2924, 28jca 532 . . . . . . . . . . 11  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )  ->  (
( ( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3029ex 434 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d
)  e.  NN  /\  ( 2nd `  d )  e.  NN ) )  ->  ( ( ( 1st `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a ) )  e.  ( 0 ... ( ( abs `  a
)  -  1 ) ) ) ) )
31 elxp7 6604 . . . . . . . . . 10  |-  ( d  e.  ( NN  X.  NN )  <->  ( d  e.  ( _V  X.  _V )  /\  ( ( 1st `  d )  e.  NN  /\  ( 2nd `  d
)  e.  NN ) ) )
32 opelxp 4864 . . . . . . . . . 10  |-  ( <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) )  <->  ( (
( 1st `  d
)  mod  ( abs `  a ) )  e.  ( 0 ... (
( abs `  a
)  -  1 ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3330, 31, 323imtr4g 270 . . . . . . . . 9  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  ( NN 
X.  NN )  ->  <. ( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) ) )
3416, 33syl5 32 . . . . . . . 8  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) ) )
3534imp 429 . . . . . . 7  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  e.  {
<. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  <. ( ( 1st `  d )  mod  ( abs `  a
) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
3635adantlrr 720 . . . . . 6  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  /\  d  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } )  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  e.  ( ( 0 ... ( ( abs `  a
)  -  1 ) )  X.  ( 0 ... ( ( abs `  a )  -  1 ) ) ) )
37 fveq2 5686 . . . . . . . 8  |-  ( d  =  e  ->  ( 1st `  d )  =  ( 1st `  e
) )
3837oveq1d 6101 . . . . . . 7  |-  ( d  =  e  ->  (
( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) ) )
39 fveq2 5686 . . . . . . . 8  |-  ( d  =  e  ->  ( 2nd `  d )  =  ( 2nd `  e
) )
4039oveq1d 6101 . . . . . . 7  |-  ( d  =  e  ->  (
( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )
4138, 40opeq12d 4062 . . . . . 6  |-  ( d  =  e  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
4214, 36, 41fphpd 29108 . . . . 5  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )
43 eleq1 2498 . . . . . . . . . . . . . 14  |-  ( b  =  f  ->  (
b  e.  NN  <->  f  e.  NN ) )
44 eleq1 2498 . . . . . . . . . . . . . 14  |-  ( c  =  g  ->  (
c  e.  NN  <->  g  e.  NN ) )
4543, 44bi2anan9 868 . . . . . . . . . . . . 13  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( b  e.  NN  /\  c  e.  NN )  <->  ( f  e.  NN  /\  g  e.  NN ) ) )
46 oveq1 6093 . . . . . . . . . . . . . . 15  |-  ( b  =  f  ->  (
b ^ 2 )  =  ( f ^
2 ) )
47 oveq1 6093 . . . . . . . . . . . . . . . 16  |-  ( c  =  g  ->  (
c ^ 2 )  =  ( g ^
2 ) )
4847oveq2d 6102 . . . . . . . . . . . . . . 15  |-  ( c  =  g  ->  ( D  x.  ( c ^ 2 ) )  =  ( D  x.  ( g ^ 2 ) ) )
4946, 48oveqan12d 6105 . . . . . . . . . . . . . 14  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  ( ( f ^ 2 )  -  ( D  x.  ( g ^ 2 ) ) ) )
5049eqeq1d 2446 . . . . . . . . . . . . 13  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a  <-> 
( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) )
5145, 50anbi12d 710 . . . . . . . . . . . 12  |-  ( ( b  =  f  /\  c  =  g )  ->  ( ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )  <->  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) ) )
5251cbvopabv 4356 . . . . . . . . . . 11  |-  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  =  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) }
5352eleq2i 2502 . . . . . . . . . 10  |-  ( e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  <->  e  e.  {
<. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) } )
5453biimpi 194 . . . . . . . . 9  |-  ( e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  e  e.  { <. f ,  g
>.  |  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) } )
55 elopab 4592 . . . . . . . . . . 11  |-  ( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  <->  E. b E. c ( d  = 
<. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )
56 elopab 4592 . . . . . . . . . . . . . 14  |-  ( e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  <->  E. f E. g ( e  = 
<. f ,  g >.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) ) )
57 simp3ll 1059 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  =  <. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) )  ->  b  e.  NN )
58573expb 1188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  b  e.  NN )
59583ad2ant1 1009 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  b  e.  NN )
60 simp3lr 1060 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  d  =  <. b ,  c >.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) )  ->  c  e.  NN )
61603expb 1188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  c  e.  NN )
62613ad2ant1 1009 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  c  e.  NN )
63 simp1lr 1052 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  e.  ZZ )
64633adant1r 1211 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  e.  ZZ )
65 simp-4l 765 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  D  e.  NN )
66653ad2ant1 1009 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  D  e.  NN )
67 simp-4r 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  -.  ( sqr `  D )  e.  QQ )
68673ad2ant1 1009 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  -.  ( sqr `  D )  e.  QQ )
69 simp2ll 1055 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  f  e.  NN )
70693adant2l 1212 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  f  e.  NN )
71 simp2lr 1056 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  g  e.  NN )
72713adant2l 1212 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  g  e.  NN )
73 simp2l 1014 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  e  =  <. f ,  g
>. )
74 simp1rl 1053 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  d  =  <. b ,  c
>. )
75 simp3l 1016 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  d  =/=  e )
76 simp3 990 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  d  =/=  e )
77 simp2 989 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  d  =  <. b ,  c >.
)
78 simp1 988 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  e  =  <. f ,  g >.
)
7976, 77, 783netr3d 2629 . . . . . . . . . . . . . . . . . . 19  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  <. b ,  c >.  =/=  <. f ,  g >. )
80 vex 2970 . . . . . . . . . . . . . . . . . . . . 21  |-  b  e. 
_V
81 vex 2970 . . . . . . . . . . . . . . . . . . . . 21  |-  c  e. 
_V
8280, 81opth 4561 . . . . . . . . . . . . . . . . . . . 20  |-  ( <.
b ,  c >.  =  <. f ,  g
>. 
<->  ( b  =  f  /\  c  =  g ) )
8382necon3abii 2633 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
b ,  c >.  =/=  <. f ,  g
>. 
<->  -.  ( b  =  f  /\  c  =  g ) )
8479, 83sylib 196 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  =  <. f ,  g >.  /\  d  =  <. b ,  c
>.  /\  d  =/=  e
)  ->  -.  (
b  =  f  /\  c  =  g )
)
8573, 74, 75, 84syl3anc 1218 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  -.  ( b  =  f  /\  c  =  g ) )
86 simp1lr 1052 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  a  =/=  0 )
87 simp1rr 1054 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  /\  (
e  =  <. f ,  g >.  /\  (
( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) )  /\  (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )
88873adant1l 1210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a )
89 simp2rr 1058 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a )
90 simp3r 1017 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
91 simp3 990 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  <. ( ( 1st `  d )  mod  ( abs `  a
) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )
92 ovex 6111 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1st `  d )  mod  ( abs `  a
) )  e.  _V
93 ovex 6111 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2nd `  d )  mod  ( abs `  a
) )  e.  _V
9492, 93opth 4561 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. 
<->  ( ( ( 1st `  d )  mod  ( abs `  a ) )  =  ( ( 1st `  e )  mod  ( abs `  a ) )  /\  ( ( 2nd `  d )  mod  ( abs `  a ) )  =  ( ( 2nd `  e )  mod  ( abs `  a ) ) ) )
9591, 94sylib 196 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )
96 simprl 755 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  d )  mod  ( abs `  a
) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) ) )
97 simpll 753 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  d  =  <. b ,  c >.
)
9897fveq2d 5690 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  d )  =  ( 1st `  <. b ,  c >. )
)
9980, 81op1st 6580 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 1st `  <. b ,  c
>. )  =  b
10098, 99syl6eq 2486 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  d )  =  b )
101100oveq1d 6101 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  d )  mod  ( abs `  a
) )  =  ( b  mod  ( abs `  a ) ) )
102 simplr 754 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  e  =  <. f ,  g >.
)
103102fveq2d 5690 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  e )  =  ( 1st `  <. f ,  g >. )
)
104 vex 2970 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  f  e. 
_V
105 vex 2970 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  g  e. 
_V
106104, 105op1st 6580 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 1st `  <. f ,  g
>. )  =  f
107103, 106syl6eq 2486 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 1st `  e )  =  f )
108107oveq1d 6101 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 1st `  e )  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) ) )
10996, 101, 1083eqtr3d 2478 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) ) )
110 simprr 756 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  d )  mod  ( abs `  a
) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )
11197fveq2d 5690 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  d )  =  ( 2nd `  <. b ,  c >. )
)
11280, 81op2nd 6581 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 2nd `  <. b ,  c
>. )  =  c
113111, 112syl6eq 2486 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  d )  =  c )
114113oveq1d 6101 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  d )  mod  ( abs `  a
) )  =  ( c  mod  ( abs `  a ) ) )
115102fveq2d 5690 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  e )  =  ( 2nd `  <. f ,  g >. )
)
116104, 105op2nd 6581 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 2nd `  <. f ,  g
>. )  =  g
117115, 116syl6eq 2486 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( 2nd `  e )  =  g )
118117oveq1d 6101 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( ( 2nd `  e )  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) )
119110, 114, 1183eqtr3d 2478 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) )
120109, 119jca 532 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  /\  (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) ) )  ->  ( (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) ) )
121120ex 434 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>. )  ->  ( ( ( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )  ->  ( ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a
) ) ) ) )
1221213adant3 1008 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
( ( 1st `  d
)  mod  ( abs `  a ) )  =  ( ( 1st `  e
)  mod  ( abs `  a ) )  /\  ( ( 2nd `  d
)  mod  ( abs `  a ) )  =  ( ( 2nd `  e
)  mod  ( abs `  a ) ) )  ->  ( ( b  mod  ( abs `  a
) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a
) ) ) ) )
12395, 122mpd 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( d  =  <. b ,  c >.  /\  e  =  <. f ,  g
>.  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  ( (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) )  /\  ( c  mod  ( abs `  a
) )  =  ( g  mod  ( abs `  a ) ) ) )
12474, 73, 90, 123syl3anc 1218 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
( b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a
) )  /\  (
c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a ) ) ) )
125124simpld 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
b  mod  ( abs `  a ) )  =  ( f  mod  ( abs `  a ) ) )
126124simprd 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  (
c  mod  ( abs `  a ) )  =  ( g  mod  ( abs `  a ) ) )
12759, 62, 64, 66, 68, 70, 72, 85, 86, 88, 89, 125, 126pellexlem6 29128 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  /\  ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  /\  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
1281273exp 1186 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( (
e  =  <. f ,  g >.  /\  (
( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) )  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
129128exlimdvv 1691 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( E. f E. g ( e  =  <. f ,  g
>.  /\  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) )  ->  ( ( d  =/=  e  /\  <. ( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
13056, 129syl5bi 217 . . . . . . . . . . . . 13  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  ( d  =  <. b ,  c
>.  /\  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) ) )  ->  ( e  e.  { <. f ,  g
>.  |  ( (
f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^
2 )  -  ( D  x.  ( g ^ 2 ) ) )  =  a ) }  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
131130ex 434 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
132131exlimdvv 1691 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  ( E. b E. c ( d  =  <. b ,  c >.  /\  (
( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) )  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
13355, 132syl5bi 217 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ->  (
e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  ( ( f ^ 2 )  -  ( D  x.  (
g ^ 2 ) ) )  =  a ) }  ->  (
( d  =/=  e  /\  <. ( ( 1st `  d )  mod  ( abs `  a ) ) ,  ( ( 2nd `  d )  mod  ( abs `  a ) )
>.  =  <. ( ( 1st `  e )  mod  ( abs `  a
) ) ,  ( ( 2nd `  e
)  mod  ( abs `  a ) ) >.
)  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) ) )
134133impd 431 . . . . . . . . 9  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) }  /\  e  e.  { <. f ,  g >.  |  ( ( f  e.  NN  /\  g  e.  NN )  /\  (
( f ^ 2 )  -  ( D  x.  ( g ^
2 ) ) )  =  a ) } )  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
13554, 134sylan2i 655 . . . . . . . 8  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  (
( d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) }  /\  e  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } )  ->  ( (
d  =/=  e  /\  <.
( ( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) ) )
136135rexlimdvv 2842 . . . . . . 7  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0 )  ->  ( E. d  e.  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) } E. e  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 ) )
137136imp 429 . . . . . 6  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  a  =/=  0
)  /\  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
138137adantlrr 720 . . . . 5  |-  ( ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  ( a  =/=  0  /\  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  /\  E. d  e.  { <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) } E. e  e. 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ( d  =/=  e  /\  <. (
( 1st `  d
)  mod  ( abs `  a ) ) ,  ( ( 2nd `  d
)  mod  ( abs `  a ) ) >.  =  <. ( ( 1st `  e )  mod  ( abs `  a ) ) ,  ( ( 2nd `  e )  mod  ( abs `  a ) )
>. ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
13942, 138mpdan 668 . . . 4  |-  ( ( ( ( D  e.  NN  /\  -.  ( sqr `  D )  e.  QQ )  /\  a  e.  ZZ )  /\  (
a  =/=  0  /\ 
{ <. b ,  c
>.  |  ( (
b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^
2 )  -  ( D  x.  ( c ^ 2 ) ) )  =  a ) }  ~~  NN ) )  ->  E. x  e.  NN  E. y  e.  NN  ( ( x ^ 2 )  -  ( D  x.  (
y ^ 2 ) ) )  =  1 )
140139ex 434 . . 3  |-  ( ( ( D  e.  NN  /\ 
-.  ( sqr `  D
)  e.  QQ )  /\  a  e.  ZZ )  ->  ( ( a  =/=  0  /\  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  (
( b ^ 2 )  -  ( D  x.  ( c ^
2 ) ) )  =  a ) } 
~~  NN )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 ) )
141140rexlimdva 2836 . 2  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  ( E. a  e.  ZZ  ( a  =/=  0  /\  { <. b ,  c >.  |  ( ( b  e.  NN  /\  c  e.  NN )  /\  ( ( b ^ 2 )  -  ( D  x.  (
c ^ 2 ) ) )  =  a ) }  ~~  NN )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 ) )
1421, 141mpd 15 1  |-  ( ( D  e.  NN  /\  -.  ( sqr `  D
)  e.  QQ )  ->  E. x  e.  NN  E. y  e.  NN  (
( x ^ 2 )  -  ( D  x.  ( y ^
2 ) ) )  =  1 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2601   E.wrex 2711   _Vcvv 2967   <.cop 3878   class class class wbr 4287   {copab 4344    X. cxp 4833   ` cfv 5413  (class class class)co 6086   omcom 6471   1stc1st 6570   2ndc2nd 6571    ~~ cen 7299    ~< csdm 7301   Fincfn 7302   0cc0 9274   1c1 9275    x. cmul 9279    - cmin 9587   NNcn 10314   2c2 10363   ZZcz 10638   QQcq 10945   ...cfz 11429    mod cmo 11700   ^cexp 11857   sqrcsqr 12714   abscabs 12715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-omul 6917  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-oi 7716  df-card 8101  df-acn 8104  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-ico 11298  df-fz 11430  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-dvds 13528  df-gcd 13683  df-numer 13805  df-denom 13806
This theorem is referenced by:  pellqrex  29173
  Copyright terms: Public domain W3C validator