Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgaplem Structured version   Unicode version

Theorem pell1qrgaplem 29352
Description: Lemma for pell1qrgap 29353. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgaplem  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  <_ 
( A  +  ( ( sqr `  D
)  x.  B ) ) )

Proof of Theorem pell1qrgaplem
StepHypRef Expression
1 nnrp 11101 . . . . . 6  |-  ( D  e.  NN  ->  D  e.  RR+ )
21ad2antrr 725 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  RR+ )
3 1rp 11096 . . . . . 6  |-  1  e.  RR+
43a1i 11 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  RR+ )
52, 4rpaddcld 11143 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  e.  RR+ )
65rpsqrcld 13000 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR+ )
76rpred 11128 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR )
82rpsqrcld 13000 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  RR+ )
98rpred 11128 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  RR )
10 nn0re 10689 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
1110adantr 465 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A  e.  RR )
1211ad2antlr 726 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  A  e.  RR )
13 nn0re 10689 . . . . 5  |-  ( B  e.  NN0  ->  B  e.  RR )
1413adantl 466 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  RR )
1514ad2antlr 726 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  RR )
169, 15remulcld 9515 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  B )  e.  RR )
172rpred 11128 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  RR )
18 1re 9486 . . . . . . . 8  |-  1  e.  RR
1918a1i 11 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  RR )
2015resqcld 12135 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B ^ 2 )  e.  RR )
2119, 20resubcld 9877 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  -  ( B ^ 2 ) )  e.  RR )
2217, 21remulcld 9515 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  e.  RR )
23 0re 9487 . . . . . . 7  |-  0  e.  RR
2423a1i 11 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  e.  RR )
2517, 24remulcld 9515 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  0 )  e.  RR )
2612resqcld 12135 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  e.  RR )
27 sq1 12061 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
2827a1i 11 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1 ^ 2 )  =  1 )
29 nnge1 10449 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  1  <_  B )
3029adantl 466 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  e.  NN )  ->  1  <_  B )
31 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <  ( A  +  ( ( sqr `  D
)  x.  B ) ) )
32 oveq1 6197 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  =  0  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
3332adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
34 sq0 12058 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0 ^ 2 )  =  0
3533, 34syl6eq 2508 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( B ^ 2 )  =  0 )
3635oveq2d 6206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  ( B ^ 2 ) )  =  ( D  x.  0 ) )
372rpcnd 11130 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  CC )
3837adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  D  e.  CC )
3938mul01d 9669 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  0 )  =  0 )
4036, 39eqtrd 2492 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  ( B ^ 2 ) )  =  0 )
4140oveq2d 6206 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  ( ( A ^ 2 )  - 
0 ) )
42 simplrr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  1 )
4312recnd 9513 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  A  e.  CC )
4443sqcld 12107 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  e.  CC )
4544adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A ^ 2 )  e.  CC )
4645subid1d 9809 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  0 )  =  ( A ^
2 ) )
4741, 42, 463eqtr3d 2500 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  =  ( A ^
2 ) )
4827, 47syl5req 2505 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A ^ 2 )  =  ( 1 ^ 2 ) )
49 nn0ge0 10706 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  NN0  ->  0  <_  A )
5049adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
0  <_  A )
5150ad2antlr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  A )
52 0le1 9964 . . . . . . . . . . . . . . . . . 18  |-  0  <_  1
5352a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  1 )
54 sq11 12039 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  0  <_  1 ) )  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  =  1
) )
5512, 51, 19, 53, 54syl22anc 1220 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
5655adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
5748, 56mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  A  =  1 )
58 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  B  =  0 )
5958oveq2d 6206 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  B )  =  ( ( sqr `  D )  x.  0 ) )
608rpcnd 11130 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  CC )
6160adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( sqr `  D )  e.  CC )
6261mul01d 9669 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  0 )  =  0 )
6359, 62eqtrd 2492 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  B )  =  0 )
6457, 63oveq12d 6208 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A  +  ( ( sqr `  D )  x.  B ) )  =  ( 1  +  0 ) )
65 1p0e1 10535 . . . . . . . . . . . . 13  |-  ( 1  +  0 )  =  1
6664, 65syl6eq 2508 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A  +  ( ( sqr `  D )  x.  B ) )  =  1 )
6731, 66breqtrd 4414 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <  1 )
6818ltnri 9584 . . . . . . . . . . 11  |-  -.  1  <  1
69 pm2.24 109 . . . . . . . . . . 11  |-  ( 1  <  1  ->  ( -.  1  <  1  ->  1  <_  B )
)
7067, 68, 69mpisyl 18 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <_  B )
71 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  NN0 )
72 elnn0 10682 . . . . . . . . . . 11  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
7371, 72sylib 196 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B  e.  NN  \/  B  =  0 ) )
7430, 70, 73mpjaodan 784 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  <_  B )
75 nn0ge0 10706 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  0  <_  B )
7675adantl 466 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
0  <_  B )
7776ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  B )
7819, 15, 53, 77le2sqd 12144 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  <_  B  <->  ( 1 ^ 2 )  <_ 
( B ^ 2 ) ) )
7974, 78mpbid 210 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1 ^ 2 )  <_  ( B ^
2 ) )
8028, 79eqbrtrrd 4412 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  <_  ( B ^ 2 ) )
8119, 20suble0d 10031 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( 1  -  ( B ^ 2 ) )  <_  0  <->  1  <_  ( B ^ 2 ) ) )
8280, 81mpbird 232 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  -  ( B ^ 2 ) )  <_  0 )
8321, 24, 2lemul2d 11168 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( 1  -  ( B ^ 2 ) )  <_  0  <->  ( D  x.  ( 1  -  ( B ^ 2 ) ) )  <_  ( D  x.  0 ) ) )
8482, 83mpbid 210 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  <_  ( D  x.  0 ) )
8522, 25, 26, 84leadd2dd 10055 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  x.  ( 1  -  ( B ^ 2 ) ) ) )  <_  ( ( A ^ 2 )  +  ( D  x.  0 ) ) )
865rpcnd 11130 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  e.  CC )
8786sqsqrd 13027 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  =  ( D  + 
1 ) )
88 simprr 756 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  1 )
8988eqcomd 2459 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  =  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )
9089oveq2d 6206 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  =  ( D  +  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) ) ) )
9115recnd 9513 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  CC )
9291sqcld 12107 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B ^ 2 )  e.  CC )
9337, 92mulcld 9507 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( B ^ 2 ) )  e.  CC )
9437, 44, 93addsub12d 9843 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^ 2 )  +  ( D  -  ( D  x.  ( B ^ 2 ) ) ) ) )
9519recnd 9513 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  CC )
9637, 95, 92subdid 9901 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  =  ( ( D  x.  1 )  -  ( D  x.  ( B ^ 2 ) ) ) )
9737mulid1d 9504 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  1 )  =  D )
9897oveq1d 6205 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( D  x.  1 )  -  ( D  x.  ( B ^
2 ) ) )  =  ( D  -  ( D  x.  ( B ^ 2 ) ) ) )
9996, 98eqtr2d 2493 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  -  ( D  x.  ( B ^ 2 ) ) )  =  ( D  x.  (
1  -  ( B ^ 2 ) ) ) )
10099oveq2d 6206 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^
2 )  +  ( D  x.  ( 1  -  ( B ^
2 ) ) ) ) )
10194, 100eqtrd 2492 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^ 2 )  +  ( D  x.  ( 1  -  ( B ^ 2 ) ) ) ) )
10290, 101eqtrd 2492 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  =  ( ( A ^ 2 )  +  ( D  x.  (
1  -  ( B ^ 2 ) ) ) ) )
10387, 102eqtrd 2492 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  =  ( ( A ^ 2 )  +  ( D  x.  (
1  -  ( B ^ 2 ) ) ) ) )
10437mul01d 9669 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  0 )  =  0 )
105104oveq2d 6206 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  x.  0 ) )  =  ( ( A ^ 2 )  +  0 ) )
10644addid1d 9670 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  0 )  =  ( A ^
2 ) )
107105, 106eqtr2d 2493 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  =  ( ( A ^
2 )  +  ( D  x.  0 ) ) )
10885, 103, 1073brtr4d 4420 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  <_  ( A ^
2 ) )
1096rpge0d 11132 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  ( sqr `  ( D  +  1 ) ) )
1107, 12, 109, 51le2sqd 12144 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  <_  A  <->  ( ( sqr `  ( D  + 
1 ) ) ^
2 )  <_  ( A ^ 2 ) ) )
111108, 110mpbird 232 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  <_  A )
11260mulid1d 9504 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  1 )  =  ( sqr `  D
) )
11319, 15, 8lemul2d 11168 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  <_  B  <->  ( ( sqr `  D )  x.  1 )  <_  (
( sqr `  D
)  x.  B ) ) )
11474, 113mpbid 210 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  1 )  <_  ( ( sqr `  D )  x.  B
) )
115112, 114eqbrtrrd 4412 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  <_ 
( ( sqr `  D
)  x.  B ) )
1167, 9, 12, 16, 111, 115le2addd 10058 1  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  <_ 
( A  +  ( ( sqr `  D
)  x.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   class class class wbr 4390   ` cfv 5516  (class class class)co 6190   CCcc 9381   RRcr 9382   0cc0 9383   1c1 9384    + caddc 9386    x. cmul 9388    < clt 9519    <_ cle 9520    - cmin 9696   NNcn 10423   2c2 10472   NN0cn0 10680   RR+crp 11092   ^cexp 11966   sqrcsqr 12824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460  ax-pre-sup 9461
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-2nd 6678  df-recs 6932  df-rdg 6966  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-sup 7792  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-div 10095  df-nn 10424  df-2 10481  df-3 10482  df-n0 10681  df-z 10748  df-uz 10963  df-rp 11093  df-seq 11908  df-exp 11967  df-cj 12690  df-re 12691  df-im 12692  df-sqr 12826  df-abs 12827
This theorem is referenced by:  pell1qrgap  29353
  Copyright terms: Public domain W3C validator