Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgaplem Structured version   Unicode version

Theorem pell1qrgaplem 30737
Description: Lemma for pell1qrgap 30738. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgaplem  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  <_ 
( A  +  ( ( sqr `  D
)  x.  B ) ) )

Proof of Theorem pell1qrgaplem
StepHypRef Expression
1 nnrp 11241 . . . . . 6  |-  ( D  e.  NN  ->  D  e.  RR+ )
21ad2antrr 725 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  RR+ )
3 1rp 11236 . . . . . 6  |-  1  e.  RR+
43a1i 11 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  RR+ )
52, 4rpaddcld 11283 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  e.  RR+ )
65rpsqrtcld 13223 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR+ )
76rpred 11268 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR )
82rpsqrtcld 13223 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  RR+ )
98rpred 11268 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  RR )
10 nn0re 10816 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
1110adantr 465 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A  e.  RR )
1211ad2antlr 726 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  A  e.  RR )
13 nn0re 10816 . . . . 5  |-  ( B  e.  NN0  ->  B  e.  RR )
1413adantl 466 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  RR )
1514ad2antlr 726 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  RR )
169, 15remulcld 9636 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  B )  e.  RR )
172rpred 11268 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  RR )
18 1re 9607 . . . . . . . 8  |-  1  e.  RR
1918a1i 11 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  RR )
2015resqcld 12316 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B ^ 2 )  e.  RR )
2119, 20resubcld 9999 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  -  ( B ^ 2 ) )  e.  RR )
2217, 21remulcld 9636 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  e.  RR )
23 0re 9608 . . . . . . 7  |-  0  e.  RR
2423a1i 11 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  e.  RR )
2517, 24remulcld 9636 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  0 )  e.  RR )
2612resqcld 12316 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  e.  RR )
27 sq1 12242 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
2827a1i 11 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1 ^ 2 )  =  1 )
29 nnge1 10574 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  1  <_  B )
3029adantl 466 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  e.  NN )  ->  1  <_  B )
31 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <  ( A  +  ( ( sqr `  D
)  x.  B ) ) )
32 oveq1 6302 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  =  0  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
3332adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
34 sq0 12239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0 ^ 2 )  =  0
3533, 34syl6eq 2524 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( B ^ 2 )  =  0 )
3635oveq2d 6311 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  ( B ^ 2 ) )  =  ( D  x.  0 ) )
372rpcnd 11270 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  CC )
3837adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  D  e.  CC )
3938mul01d 9790 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  0 )  =  0 )
4036, 39eqtrd 2508 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  ( B ^ 2 ) )  =  0 )
4140oveq2d 6311 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  ( ( A ^ 2 )  - 
0 ) )
42 simplrr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  1 )
4312recnd 9634 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  A  e.  CC )
4443sqcld 12288 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  e.  CC )
4544adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A ^ 2 )  e.  CC )
4645subid1d 9931 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  0 )  =  ( A ^
2 ) )
4741, 42, 463eqtr3d 2516 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  =  ( A ^
2 ) )
4827, 47syl5req 2521 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A ^ 2 )  =  ( 1 ^ 2 ) )
49 nn0ge0 10833 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  NN0  ->  0  <_  A )
5049adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
0  <_  A )
5150ad2antlr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  A )
52 0le1 10088 . . . . . . . . . . . . . . . . . 18  |-  0  <_  1
5352a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  1 )
54 sq11 12220 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  0  <_  1 ) )  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  =  1
) )
5512, 51, 19, 53, 54syl22anc 1229 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
5655adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
5748, 56mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  A  =  1 )
58 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  B  =  0 )
5958oveq2d 6311 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  B )  =  ( ( sqr `  D )  x.  0 ) )
608rpcnd 11270 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  CC )
6160adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( sqr `  D )  e.  CC )
6261mul01d 9790 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  0 )  =  0 )
6359, 62eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  B )  =  0 )
6457, 63oveq12d 6313 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A  +  ( ( sqr `  D )  x.  B ) )  =  ( 1  +  0 ) )
65 1p0e1 10660 . . . . . . . . . . . . 13  |-  ( 1  +  0 )  =  1
6664, 65syl6eq 2524 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A  +  ( ( sqr `  D )  x.  B ) )  =  1 )
6731, 66breqtrd 4477 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <  1 )
6818ltnri 9705 . . . . . . . . . . 11  |-  -.  1  <  1
69 pm2.24 109 . . . . . . . . . . 11  |-  ( 1  <  1  ->  ( -.  1  <  1  ->  1  <_  B )
)
7067, 68, 69mpisyl 18 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <_  B )
71 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  NN0 )
72 elnn0 10809 . . . . . . . . . . 11  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
7371, 72sylib 196 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B  e.  NN  \/  B  =  0 ) )
7430, 70, 73mpjaodan 784 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  <_  B )
75 nn0ge0 10833 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  0  <_  B )
7675adantl 466 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
0  <_  B )
7776ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  B )
7819, 15, 53, 77le2sqd 12325 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  <_  B  <->  ( 1 ^ 2 )  <_ 
( B ^ 2 ) ) )
7974, 78mpbid 210 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1 ^ 2 )  <_  ( B ^
2 ) )
8028, 79eqbrtrrd 4475 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  <_  ( B ^ 2 ) )
8119, 20suble0d 10155 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( 1  -  ( B ^ 2 ) )  <_  0  <->  1  <_  ( B ^ 2 ) ) )
8280, 81mpbird 232 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  -  ( B ^ 2 ) )  <_  0 )
8321, 24, 2lemul2d 11308 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( 1  -  ( B ^ 2 ) )  <_  0  <->  ( D  x.  ( 1  -  ( B ^ 2 ) ) )  <_  ( D  x.  0 ) ) )
8482, 83mpbid 210 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  <_  ( D  x.  0 ) )
8522, 25, 26, 84leadd2dd 10179 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  x.  ( 1  -  ( B ^ 2 ) ) ) )  <_  ( ( A ^ 2 )  +  ( D  x.  0 ) ) )
865rpcnd 11270 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  e.  CC )
8786sqsqrtd 13250 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  =  ( D  + 
1 ) )
88 simprr 756 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  1 )
8988eqcomd 2475 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  =  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )
9089oveq2d 6311 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  =  ( D  +  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) ) ) )
9115recnd 9634 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  CC )
9291sqcld 12288 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B ^ 2 )  e.  CC )
9337, 92mulcld 9628 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( B ^ 2 ) )  e.  CC )
9437, 44, 93addsub12d 9965 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^ 2 )  +  ( D  -  ( D  x.  ( B ^ 2 ) ) ) ) )
9519recnd 9634 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  CC )
9637, 95, 92subdid 10024 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  =  ( ( D  x.  1 )  -  ( D  x.  ( B ^ 2 ) ) ) )
9737mulid1d 9625 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  1 )  =  D )
9897oveq1d 6310 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( D  x.  1 )  -  ( D  x.  ( B ^
2 ) ) )  =  ( D  -  ( D  x.  ( B ^ 2 ) ) ) )
9996, 98eqtr2d 2509 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  -  ( D  x.  ( B ^ 2 ) ) )  =  ( D  x.  (
1  -  ( B ^ 2 ) ) ) )
10099oveq2d 6311 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^
2 )  +  ( D  x.  ( 1  -  ( B ^
2 ) ) ) ) )
10194, 100eqtrd 2508 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^ 2 )  +  ( D  x.  ( 1  -  ( B ^ 2 ) ) ) ) )
10290, 101eqtrd 2508 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  =  ( ( A ^ 2 )  +  ( D  x.  (
1  -  ( B ^ 2 ) ) ) ) )
10387, 102eqtrd 2508 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  =  ( ( A ^ 2 )  +  ( D  x.  (
1  -  ( B ^ 2 ) ) ) ) )
10437mul01d 9790 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  0 )  =  0 )
105104oveq2d 6311 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  x.  0 ) )  =  ( ( A ^ 2 )  +  0 ) )
10644addid1d 9791 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  0 )  =  ( A ^
2 ) )
107105, 106eqtr2d 2509 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  =  ( ( A ^
2 )  +  ( D  x.  0 ) ) )
10885, 103, 1073brtr4d 4483 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  <_  ( A ^
2 ) )
1096rpge0d 11272 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  ( sqr `  ( D  +  1 ) ) )
1107, 12, 109, 51le2sqd 12325 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  <_  A  <->  ( ( sqr `  ( D  + 
1 ) ) ^
2 )  <_  ( A ^ 2 ) ) )
111108, 110mpbird 232 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  <_  A )
11260mulid1d 9625 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  1 )  =  ( sqr `  D
) )
11319, 15, 8lemul2d 11308 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  <_  B  <->  ( ( sqr `  D )  x.  1 )  <_  (
( sqr `  D
)  x.  B ) ) )
11474, 113mpbid 210 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  1 )  <_  ( ( sqr `  D )  x.  B
) )
115112, 114eqbrtrrd 4475 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  <_ 
( ( sqr `  D
)  x.  B ) )
1167, 9, 12, 16, 111, 115le2addd 10182 1  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  <_ 
( A  +  ( ( sqr `  D
)  x.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    < clt 9640    <_ cle 9641    - cmin 9817   NNcn 10548   2c2 10597   NN0cn0 10807   RR+crp 11232   ^cexp 12146   sqrcsqrt 13046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-seq 12088  df-exp 12147  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049
This theorem is referenced by:  pell1qrgap  30738
  Copyright terms: Public domain W3C validator