Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell1qrgaplem Structured version   Unicode version

Theorem pell1qrgaplem 29185
Description: Lemma for pell1qrgap 29186. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell1qrgaplem  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  <_ 
( A  +  ( ( sqr `  D
)  x.  B ) ) )

Proof of Theorem pell1qrgaplem
StepHypRef Expression
1 nnrp 10992 . . . . . 6  |-  ( D  e.  NN  ->  D  e.  RR+ )
21ad2antrr 725 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  RR+ )
3 1rp 10987 . . . . . 6  |-  1  e.  RR+
43a1i 11 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  RR+ )
52, 4rpaddcld 11034 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  e.  RR+ )
65rpsqrcld 12890 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR+ )
76rpred 11019 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  e.  RR )
82rpsqrcld 12890 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  RR+ )
98rpred 11019 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  RR )
10 nn0re 10580 . . . 4  |-  ( A  e.  NN0  ->  A  e.  RR )
1110adantr 465 . . 3  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  A  e.  RR )
1211ad2antlr 726 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  A  e.  RR )
13 nn0re 10580 . . . . 5  |-  ( B  e.  NN0  ->  B  e.  RR )
1413adantl 466 . . . 4  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  ->  B  e.  RR )
1514ad2antlr 726 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  RR )
169, 15remulcld 9406 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  B )  e.  RR )
172rpred 11019 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  RR )
18 1re 9377 . . . . . . . 8  |-  1  e.  RR
1918a1i 11 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  RR )
2015resqcld 12026 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B ^ 2 )  e.  RR )
2119, 20resubcld 9768 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  -  ( B ^ 2 ) )  e.  RR )
2217, 21remulcld 9406 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  e.  RR )
23 0re 9378 . . . . . . 7  |-  0  e.  RR
2423a1i 11 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  e.  RR )
2517, 24remulcld 9406 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  0 )  e.  RR )
2612resqcld 12026 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  e.  RR )
27 sq1 11952 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
2827a1i 11 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1 ^ 2 )  =  1 )
29 nnge1 10340 . . . . . . . . . . 11  |-  ( B  e.  NN  ->  1  <_  B )
3029adantl 466 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  e.  NN )  ->  1  <_  B )
31 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <  ( A  +  ( ( sqr `  D
)  x.  B ) ) )
32 oveq1 6093 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  =  0  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
3332adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( B ^ 2 )  =  ( 0 ^ 2 ) )
34 sq0 11949 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0 ^ 2 )  =  0
3533, 34syl6eq 2486 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( B ^ 2 )  =  0 )
3635oveq2d 6102 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  ( B ^ 2 ) )  =  ( D  x.  0 ) )
372rpcnd 11021 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  D  e.  CC )
3837adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  D  e.  CC )
3938mul01d 9560 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  0 )  =  0 )
4036, 39eqtrd 2470 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( D  x.  ( B ^ 2 ) )  =  0 )
4140oveq2d 6102 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  ( ( A ^ 2 )  - 
0 ) )
42 simplrr 760 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  1 )
4312recnd 9404 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  A  e.  CC )
4443sqcld 11998 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  e.  CC )
4544adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A ^ 2 )  e.  CC )
4645subid1d 9700 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  -  0 )  =  ( A ^
2 ) )
4741, 42, 463eqtr3d 2478 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  =  ( A ^
2 ) )
4827, 47syl5req 2483 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A ^ 2 )  =  ( 1 ^ 2 ) )
49 nn0ge0 10597 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  NN0  ->  0  <_  A )
5049adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
0  <_  A )
5150ad2antlr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  A )
52 0le1 9855 . . . . . . . . . . . . . . . . . 18  |-  0  <_  1
5352a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  1 )
54 sq11 11930 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( 1  e.  RR  /\  0  <_  1 ) )  ->  ( ( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  =  1
) )
5512, 51, 19, 53, 54syl22anc 1219 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
5655adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( A ^ 2 )  =  ( 1 ^ 2 )  <->  A  = 
1 ) )
5748, 56mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  A  =  1 )
58 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  B  =  0 )
5958oveq2d 6102 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  B )  =  ( ( sqr `  D )  x.  0 ) )
608rpcnd 11021 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  e.  CC )
6160adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( sqr `  D )  e.  CC )
6261mul01d 9560 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  0 )  =  0 )
6359, 62eqtrd 2470 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  (
( sqr `  D
)  x.  B )  =  0 )
6457, 63oveq12d 6104 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A  +  ( ( sqr `  D )  x.  B ) )  =  ( 1  +  0 ) )
65 1p0e1 10426 . . . . . . . . . . . . 13  |-  ( 1  +  0 )  =  1
6664, 65syl6eq 2486 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  ( A  +  ( ( sqr `  D )  x.  B ) )  =  1 )
6731, 66breqtrd 4311 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <  1 )
6818ltnri 9475 . . . . . . . . . . 11  |-  -.  1  <  1
69 pm2.24 109 . . . . . . . . . . 11  |-  ( 1  <  1  ->  ( -.  1  <  1  ->  1  <_  B )
)
7067, 68, 69mpisyl 18 . . . . . . . . . 10  |-  ( ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e. 
NN0 ) )  /\  ( 1  <  ( A  +  ( ( sqr `  D )  x.  B ) )  /\  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  /\  B  =  0 )  ->  1  <_  B )
71 simplrr 760 . . . . . . . . . . 11  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  NN0 )
72 elnn0 10573 . . . . . . . . . . 11  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
7371, 72sylib 196 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B  e.  NN  \/  B  =  0 ) )
7430, 70, 73mpjaodan 784 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  <_  B )
75 nn0ge0 10597 . . . . . . . . . . . 12  |-  ( B  e.  NN0  ->  0  <_  B )
7675adantl 466 . . . . . . . . . . 11  |-  ( ( A  e.  NN0  /\  B  e.  NN0 )  -> 
0  <_  B )
7776ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  B )
7819, 15, 53, 77le2sqd 12035 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  <_  B  <->  ( 1 ^ 2 )  <_ 
( B ^ 2 ) ) )
7974, 78mpbid 210 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1 ^ 2 )  <_  ( B ^
2 ) )
8028, 79eqbrtrrd 4309 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  <_  ( B ^ 2 ) )
8119, 20suble0d 9922 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( 1  -  ( B ^ 2 ) )  <_  0  <->  1  <_  ( B ^ 2 ) ) )
8280, 81mpbird 232 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  -  ( B ^ 2 ) )  <_  0 )
8321, 24, 2lemul2d 11059 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( 1  -  ( B ^ 2 ) )  <_  0  <->  ( D  x.  ( 1  -  ( B ^ 2 ) ) )  <_  ( D  x.  0 ) ) )
8482, 83mpbid 210 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  <_  ( D  x.  0 ) )
8522, 25, 26, 84leadd2dd 9946 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  x.  ( 1  -  ( B ^ 2 ) ) ) )  <_  ( ( A ^ 2 )  +  ( D  x.  0 ) ) )
865rpcnd 11021 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  e.  CC )
8786sqsqrd 12917 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  =  ( D  + 
1 ) )
88 simprr 756 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  -  ( D  x.  ( B ^
2 ) ) )  =  1 )
8988eqcomd 2443 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  =  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )
9089oveq2d 6102 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  =  ( D  +  ( ( A ^
2 )  -  ( D  x.  ( B ^ 2 ) ) ) ) )
9115recnd 9404 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  B  e.  CC )
9291sqcld 11998 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( B ^ 2 )  e.  CC )
9337, 92mulcld 9398 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( B ^ 2 ) )  e.  CC )
9437, 44, 93addsub12d 9734 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^ 2 )  +  ( D  -  ( D  x.  ( B ^ 2 ) ) ) ) )
9519recnd 9404 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  1  e.  CC )
9637, 95, 92subdid 9792 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  ( 1  -  ( B ^
2 ) ) )  =  ( ( D  x.  1 )  -  ( D  x.  ( B ^ 2 ) ) ) )
9737mulid1d 9395 . . . . . . . . . 10  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  1 )  =  D )
9897oveq1d 6101 . . . . . . . . 9  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( D  x.  1 )  -  ( D  x.  ( B ^
2 ) ) )  =  ( D  -  ( D  x.  ( B ^ 2 ) ) ) )
9996, 98eqtr2d 2471 . . . . . . . 8  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  -  ( D  x.  ( B ^ 2 ) ) )  =  ( D  x.  (
1  -  ( B ^ 2 ) ) ) )
10099oveq2d 6102 . . . . . . 7  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^
2 )  +  ( D  x.  ( 1  -  ( B ^
2 ) ) ) ) )
10194, 100eqtrd 2470 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) ) )  =  ( ( A ^ 2 )  +  ( D  x.  ( 1  -  ( B ^ 2 ) ) ) ) )
10290, 101eqtrd 2470 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  +  1 )  =  ( ( A ^ 2 )  +  ( D  x.  (
1  -  ( B ^ 2 ) ) ) ) )
10387, 102eqtrd 2470 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  =  ( ( A ^ 2 )  +  ( D  x.  (
1  -  ( B ^ 2 ) ) ) ) )
10437mul01d 9560 . . . . . 6  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( D  x.  0 )  =  0 )
105104oveq2d 6102 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  ( D  x.  0 ) )  =  ( ( A ^ 2 )  +  0 ) )
10644addid1d 9561 . . . . 5  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( A ^ 2 )  +  0 )  =  ( A ^
2 ) )
107105, 106eqtr2d 2471 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( A ^ 2 )  =  ( ( A ^
2 )  +  ( D  x.  0 ) ) )
10885, 103, 1073brtr4d 4317 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) ) ^ 2 )  <_  ( A ^
2 ) )
1096rpge0d 11023 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  0  <_  ( sqr `  ( D  +  1 ) ) )
1107, 12, 109, 51le2sqd 12035 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  <_  A  <->  ( ( sqr `  ( D  + 
1 ) ) ^
2 )  <_  ( A ^ 2 ) ) )
111108, 110mpbird 232 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  ( D  + 
1 ) )  <_  A )
11260mulid1d 9395 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  1 )  =  ( sqr `  D
) )
11319, 15, 8lemul2d 11059 . . . 4  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
1  <_  B  <->  ( ( sqr `  D )  x.  1 )  <_  (
( sqr `  D
)  x.  B ) ) )
11474, 113mpbid 210 . . 3  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  D
)  x.  1 )  <_  ( ( sqr `  D )  x.  B
) )
115112, 114eqbrtrrd 4309 . 2  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  ( sqr `  D )  <_ 
( ( sqr `  D
)  x.  B ) )
1167, 9, 12, 16, 111, 115le2addd 9949 1  |-  ( ( ( D  e.  NN  /\  ( A  e.  NN0  /\  B  e.  NN0 )
)  /\  ( 1  <  ( A  +  ( ( sqr `  D
)  x.  B ) )  /\  ( ( A ^ 2 )  -  ( D  x.  ( B ^ 2 ) ) )  =  1 ) )  ->  (
( sqr `  ( D  +  1 ) )  +  ( sqr `  D ) )  <_ 
( A  +  ( ( sqr `  D
)  x.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1369    e. wcel 1756   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587   NNcn 10314   2c2 10363   NN0cn0 10571   RR+crp 10983   ^cexp 11857   sqrcsqr 12714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-2nd 6573  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717
This theorem is referenced by:  pell1qrgap  29186
  Copyright terms: Public domain W3C validator