Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pell14qrgt0 Structured version   Unicode version

Theorem pell14qrgt0 30957
Description: A positive Pell solution is a positive number. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pell14qrgt0  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <  A )

Proof of Theorem pell14qrgt0
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpell14qr 30947 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell14QR `  D )  <->  ( A  e.  RR  /\  E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) ) ) )
2 0cnd 9606 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  e.  CC )
3 eldifi 3622 . . . . . . . . . . . . . . . . . . 19  |-  ( D  e.  ( NN  \NN )  ->  D  e.  NN )
43ad3antrrr 729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  D  e.  NN )
54nnred 10571 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  D  e.  RR )
64nnnn0d 10873 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  D  e.  NN0 )
76nn0ge0d 10876 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <_  D )
85, 7resqrtcld 13260 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( sqr `  D )  e.  RR )
9 zre 10889 . . . . . . . . . . . . . . . . . 18  |-  ( b  e.  ZZ  ->  b  e.  RR )
109adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  b  e.  RR )
1110ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  b  e.  RR )
128, 11remulcld 9641 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( sqr `  D
)  x.  b )  e.  RR )
1312recnd 9639 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( sqr `  D
)  x.  b )  e.  CC )
142, 13abssubd 13295 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( 0  -  ( ( sqr `  D
)  x.  b ) ) )  =  ( abs `  ( ( ( sqr `  D
)  x.  b )  -  0 ) ) )
1513subid1d 9939 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( ( sqr `  D
)  x.  b )  -  0 )  =  ( ( sqr `  D
)  x.  b ) )
1615fveq2d 5876 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( ( ( sqr `  D )  x.  b )  - 
0 ) )  =  ( abs `  (
( sqr `  D
)  x.  b ) ) )
1714, 16eqtrd 2498 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( 0  -  ( ( sqr `  D
)  x.  b ) ) )  =  ( abs `  ( ( sqr `  D )  x.  b ) ) )
18 absresq 13146 . . . . . . . . . . . . . . . 16  |-  ( ( ( sqr `  D
)  x.  b )  e.  RR  ->  (
( abs `  (
( sqr `  D
)  x.  b ) ) ^ 2 )  =  ( ( ( sqr `  D )  x.  b ) ^
2 ) )
1912, 18syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
( sqr `  D
)  x.  b ) ) ^ 2 )  =  ( ( ( sqr `  D )  x.  b ) ^
2 ) )
205recnd 9639 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  D  e.  CC )
2120sqrtcld 13279 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( sqr `  D )  e.  CC )
2210recnd 9639 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  b  e.  CC )
2322ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  b  e.  CC )
2421, 23sqmuld 12324 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( ( sqr `  D
)  x.  b ) ^ 2 )  =  ( ( ( sqr `  D ) ^ 2 )  x.  ( b ^ 2 ) ) )
2520sqsqrtd 13281 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( sqr `  D
) ^ 2 )  =  D )
2625oveq1d 6311 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( ( sqr `  D
) ^ 2 )  x.  ( b ^
2 ) )  =  ( D  x.  (
b ^ 2 ) ) )
2719, 24, 263eqtrd 2502 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
( sqr `  D
)  x.  b ) ) ^ 2 )  =  ( D  x.  ( b ^ 2 ) ) )
28 0lt1 10096 . . . . . . . . . . . . . . . 16  |-  0  <  1
29 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )
3028, 29syl5breqr 4492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <  ( ( a ^
2 )  -  ( D  x.  ( b ^ 2 ) ) ) )
3111resqcld 12338 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
b ^ 2 )  e.  RR )
325, 31remulcld 9641 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( D  x.  ( b ^ 2 ) )  e.  RR )
33 nn0re 10825 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  NN0  ->  a  e.  RR )
3433adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  a  e.  RR )
3534ad2antlr 726 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  a  e.  RR )
3635resqcld 12338 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
a ^ 2 )  e.  RR )
3732, 36posdifd 10160 . . . . . . . . . . . . . . 15  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( D  x.  (
b ^ 2 ) )  <  ( a ^ 2 )  <->  0  <  ( ( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) ) ) )
3830, 37mpbird 232 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( D  x.  ( b ^ 2 ) )  <  ( a ^
2 ) )
3927, 38eqbrtrd 4476 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
( sqr `  D
)  x.  b ) ) ^ 2 )  <  ( a ^
2 ) )
4013abscld 13278 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( ( sqr `  D )  x.  b
) )  e.  RR )
4113absge0d 13286 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <_  ( abs `  (
( sqr `  D
)  x.  b ) ) )
42 nn0ge0 10842 . . . . . . . . . . . . . . . 16  |-  ( a  e.  NN0  ->  0  <_ 
a )
4342adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  0  <_  a )
4443ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <_  a )
4540, 35, 41, 44lt2sqd 12346 . . . . . . . . . . . . 13  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
( sqr `  D
)  x.  b ) )  <  a  <->  ( ( abs `  ( ( sqr `  D )  x.  b
) ) ^ 2 )  <  ( a ^ 2 ) ) )
4639, 45mpbird 232 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( ( sqr `  D )  x.  b
) )  <  a
)
4717, 46eqbrtrd 4476 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  ( abs `  ( 0  -  ( ( sqr `  D
)  x.  b ) ) )  <  a
)
48 0red 9614 . . . . . . . . . . . 12  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  e.  RR )
4948, 12, 35absdifltd 13276 . . . . . . . . . . 11  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( abs `  (
0  -  ( ( sqr `  D )  x.  b ) ) )  <  a  <->  ( (
( ( sqr `  D
)  x.  b )  -  a )  <  0  /\  0  < 
( ( ( sqr `  D )  x.  b
)  +  a ) ) ) )
5047, 49mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
( ( ( sqr `  D )  x.  b
)  -  a )  <  0  /\  0  <  ( ( ( sqr `  D )  x.  b
)  +  a ) ) )
5150simprd 463 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <  ( ( ( sqr `  D )  x.  b
)  +  a ) )
52 nn0cn 10826 . . . . . . . . . . . 12  |-  ( a  e.  NN0  ->  a  e.  CC )
5352adantr 465 . . . . . . . . . . 11  |-  ( ( a  e.  NN0  /\  b  e.  ZZ )  ->  a  e.  CC )
5453ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  a  e.  CC )
5554, 13addcomd 9799 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  (
a  +  ( ( sqr `  D )  x.  b ) )  =  ( ( ( sqr `  D )  x.  b )  +  a ) )
5651, 55breqtrrd 4482 . . . . . . . 8  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( (
a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <  ( a  +  ( ( sqr `  D
)  x.  b ) ) )
5756adantrl 715 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
0  <  ( a  +  ( ( sqr `  D )  x.  b
) ) )
58 simprl 756 . . . . . . 7  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  ->  A  =  ( a  +  ( ( sqr `  D )  x.  b
) ) )
5957, 58breqtrrd 4482 . . . . . 6  |-  ( ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  /\  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
0  <  A )
6059ex 434 . . . . 5  |-  ( ( ( D  e.  ( NN  \NN )  /\  A  e.  RR )  /\  (
a  e.  NN0  /\  b  e.  ZZ )
)  ->  ( ( A  =  ( a  +  ( ( sqr `  D )  x.  b
) )  /\  (
( a ^ 2 )  -  ( D  x.  ( b ^
2 ) ) )  =  1 )  -> 
0  <  A )
)
6160rexlimdvva 2956 . . . 4  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  RR )  ->  ( E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 )  ->  0  <  A ) )
6261expimpd 603 . . 3  |-  ( D  e.  ( NN  \NN )  -> 
( ( A  e.  RR  /\  E. a  e.  NN0  E. b  e.  ZZ  ( A  =  ( a  +  ( ( sqr `  D
)  x.  b ) )  /\  ( ( a ^ 2 )  -  ( D  x.  ( b ^ 2 ) ) )  =  1 ) )  -> 
0  <  A )
)
631, 62sylbid 215 . 2  |-  ( D  e.  ( NN  \NN )  -> 
( A  e.  (Pell14QR `  D )  ->  0  <  A ) )
6463imp 429 1  |-  ( ( D  e.  ( NN 
\NN )  /\  A  e.  (Pell14QR `  D ) )  -> 
0  <  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   E.wrex 2808    \ cdif 3468   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    < clt 9645    <_ cle 9646    - cmin 9824   NNcn 10556   2c2 10606   NN0cn0 10816   ZZcz 10885   ^cexp 12168   sqrcsqrt 13077   abscabs 13078  ◻NNcsquarenn 30934  Pell14QRcpell14qr 30937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-rp 11246  df-seq 12110  df-exp 12169  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-pell14qr 30941
This theorem is referenced by:  pell14qrrp  30958  elpell14qr2  30960  elpell1qr2  30970  pellfundex  30984
  Copyright terms: Public domain W3C validator