MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5 Structured version   Unicode version

Theorem peano5 6622
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as theorem findes 6629. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
peano5  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Distinct variable group:    x, A

Proof of Theorem peano5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eldifn 3541 . . . . . 6  |-  ( y  e.  ( om  \  A
)  ->  -.  y  e.  A )
21adantl 464 . . . . 5  |-  ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  ->  -.  y  e.  A )
3 eldifi 3540 . . . . . . . . . 10  |-  ( y  e.  ( om  \  A
)  ->  y  e.  om )
43adantl 464 . . . . . . . . 9  |-  ( (
(/)  e.  A  /\  y  e.  ( om  \  A ) )  -> 
y  e.  om )
5 elndif 3542 . . . . . . . . . 10  |-  ( (/)  e.  A  ->  -.  (/)  e.  ( om  \  A ) )
6 eleq1 2454 . . . . . . . . . . . 12  |-  ( y  =  (/)  ->  ( y  e.  ( om  \  A
)  <->  (/)  e.  ( om 
\  A ) ) )
76biimpcd 224 . . . . . . . . . . 11  |-  ( y  e.  ( om  \  A
)  ->  ( y  =  (/)  ->  (/)  e.  ( om  \  A ) ) )
87necon3bd 2594 . . . . . . . . . 10  |-  ( y  e.  ( om  \  A
)  ->  ( -.  (/) 
e.  ( om  \  A
)  ->  y  =/=  (/) ) )
95, 8mpan9 467 . . . . . . . . 9  |-  ( (
(/)  e.  A  /\  y  e.  ( om  \  A ) )  -> 
y  =/=  (/) )
10 nnsuc 6616 . . . . . . . . 9  |-  ( ( y  e.  om  /\  y  =/=  (/) )  ->  E. x  e.  om  y  =  suc  x )
114, 9, 10syl2anc 659 . . . . . . . 8  |-  ( (
(/)  e.  A  /\  y  e.  ( om  \  A ) )  ->  E. x  e.  om  y  =  suc  x )
1211adantlr 712 . . . . . . 7  |-  ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  ->  E. x  e.  om  y  =  suc  x )
1312adantr 463 . . . . . 6  |-  ( ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  /\  (
( om  \  A
)  i^i  y )  =  (/) )  ->  E. x  e.  om  y  =  suc  x )
14 nfra1 2763 . . . . . . . . . . 11  |-  F/ x A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
)
15 nfv 1715 . . . . . . . . . . 11  |-  F/ x
( y  e.  ( om  \  A )  /\  ( ( om 
\  A )  i^i  y )  =  (/) )
1614, 15nfan 1936 . . . . . . . . . 10  |-  F/ x
( A. x  e. 
om  ( x  e.  A  ->  suc  x  e.  A )  /\  (
y  e.  ( om 
\  A )  /\  ( ( om  \  A
)  i^i  y )  =  (/) ) )
17 nfv 1715 . . . . . . . . . 10  |-  F/ x  y  e.  A
18 rsp 2748 . . . . . . . . . . 11  |-  ( A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A )  ->  ( x  e. 
om  ->  ( x  e.  A  ->  suc  x  e.  A ) ) )
19 vex 3037 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
2019sucid 4871 . . . . . . . . . . . . . . . . 17  |-  x  e. 
suc  x
21 eleq2 2455 . . . . . . . . . . . . . . . . 17  |-  ( y  =  suc  x  -> 
( x  e.  y  <-> 
x  e.  suc  x
) )
2220, 21mpbiri 233 . . . . . . . . . . . . . . . 16  |-  ( y  =  suc  x  ->  x  e.  y )
23 eleq1 2454 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  suc  x  -> 
( y  e.  om  <->  suc  x  e.  om )
)
24 peano2b 6615 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  om  <->  suc  x  e. 
om )
2523, 24syl6bbr 263 . . . . . . . . . . . . . . . . 17  |-  ( y  =  suc  x  -> 
( y  e.  om  <->  x  e.  om ) )
26 minel 3798 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  y  /\  ( ( om  \  A
)  i^i  y )  =  (/) )  ->  -.  x  e.  ( om  \  A ) )
27 neldif 3543 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  om  /\  -.  x  e.  ( om  \  A ) )  ->  x  e.  A
)
2826, 27sylan2 472 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  om  /\  ( x  e.  y  /\  ( ( om  \  A
)  i^i  y )  =  (/) ) )  ->  x  e.  A )
2928exp32 603 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  om  ->  (
x  e.  y  -> 
( ( ( om 
\  A )  i^i  y )  =  (/)  ->  x  e.  A ) ) )
3025, 29syl6bi 228 . . . . . . . . . . . . . . . 16  |-  ( y  =  suc  x  -> 
( y  e.  om  ->  ( x  e.  y  ->  ( ( ( om  \  A )  i^i  y )  =  (/)  ->  x  e.  A
) ) ) )
3122, 30mpid 41 . . . . . . . . . . . . . . 15  |-  ( y  =  suc  x  -> 
( y  e.  om  ->  ( ( ( om 
\  A )  i^i  y )  =  (/)  ->  x  e.  A ) ) )
323, 31syl5 32 . . . . . . . . . . . . . 14  |-  ( y  =  suc  x  -> 
( y  e.  ( om  \  A )  ->  ( ( ( om  \  A )  i^i  y )  =  (/)  ->  x  e.  A
) ) )
3332impd 429 . . . . . . . . . . . . 13  |-  ( y  =  suc  x  -> 
( ( y  e.  ( om  \  A
)  /\  ( ( om  \  A )  i^i  y )  =  (/) )  ->  x  e.  A
) )
34 eleq1a 2465 . . . . . . . . . . . . . 14  |-  ( suc  x  e.  A  -> 
( y  =  suc  x  ->  y  e.  A
) )
3534com12 31 . . . . . . . . . . . . 13  |-  ( y  =  suc  x  -> 
( suc  x  e.  A  ->  y  e.  A
) )
3633, 35imim12d 74 . . . . . . . . . . . 12  |-  ( y  =  suc  x  -> 
( ( x  e.  A  ->  suc  x  e.  A )  ->  (
( y  e.  ( om  \  A )  /\  ( ( om 
\  A )  i^i  y )  =  (/) )  ->  y  e.  A
) ) )
3736com13 80 . . . . . . . . . . 11  |-  ( ( y  e.  ( om 
\  A )  /\  ( ( om  \  A
)  i^i  y )  =  (/) )  ->  (
( x  e.  A  ->  suc  x  e.  A
)  ->  ( y  =  suc  x  ->  y  e.  A ) ) )
3818, 37sylan9 655 . . . . . . . . . 10  |-  ( ( A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
)  /\  ( y  e.  ( om  \  A
)  /\  ( ( om  \  A )  i^i  y )  =  (/) ) )  ->  (
x  e.  om  ->  ( y  =  suc  x  ->  y  e.  A ) ) )
3916, 17, 38rexlimd 2866 . . . . . . . . 9  |-  ( ( A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
)  /\  ( y  e.  ( om  \  A
)  /\  ( ( om  \  A )  i^i  y )  =  (/) ) )  ->  ( E. x  e.  om  y  =  suc  x  -> 
y  e.  A ) )
4039exp32 603 . . . . . . . 8  |-  ( A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A )  ->  ( y  e.  ( om  \  A
)  ->  ( (
( om  \  A
)  i^i  y )  =  (/)  ->  ( E. x  e.  om  y  =  suc  x  ->  y  e.  A ) ) ) )
4140a1i 11 . . . . . . 7  |-  ( (/)  e.  A  ->  ( A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A )  ->  ( y  e.  ( om  \  A
)  ->  ( (
( om  \  A
)  i^i  y )  =  (/)  ->  ( E. x  e.  om  y  =  suc  x  ->  y  e.  A ) ) ) ) )
4241imp41 591 . . . . . 6  |-  ( ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  /\  (
( om  \  A
)  i^i  y )  =  (/) )  ->  ( E. x  e.  om  y  =  suc  x  -> 
y  e.  A ) )
4313, 42mpd 15 . . . . 5  |-  ( ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  /\  (
( om  \  A
)  i^i  y )  =  (/) )  ->  y  e.  A )
442, 43mtand 657 . . . 4  |-  ( ( ( (/)  e.  A  /\  A. x  e.  om  ( x  e.  A  ->  suc  x  e.  A
) )  /\  y  e.  ( om  \  A
) )  ->  -.  ( ( om  \  A
)  i^i  y )  =  (/) )
4544nrexdv 2838 . . 3  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  -.  E. y  e.  ( om  \  A
) ( ( om 
\  A )  i^i  y )  =  (/) )
46 ordom 6608 . . . . 5  |-  Ord  om
47 difss 3545 . . . . 5  |-  ( om 
\  A )  C_  om
48 tz7.5 4813 . . . . 5  |-  ( ( Ord  om  /\  ( om  \  A )  C_  om 
/\  ( om  \  A
)  =/=  (/) )  ->  E. y  e.  ( om  \  A ) ( ( om  \  A
)  i^i  y )  =  (/) )
4946, 47, 48mp3an12 1312 . . . 4  |-  ( ( om  \  A )  =/=  (/)  ->  E. y  e.  ( om  \  A
) ( ( om 
\  A )  i^i  y )  =  (/) )
5049necon1bi 2615 . . 3  |-  ( -. 
E. y  e.  ( om  \  A ) ( ( om  \  A
)  i^i  y )  =  (/)  ->  ( om  \  A )  =  (/) )
5145, 50syl 16 . 2  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  ( om  \  A )  =  (/) )
52 ssdif0 3801 . 2  |-  ( om  C_  A  <->  ( om  \  A
)  =  (/) )
5351, 52sylibr 212 1  |-  ( (
(/)  e.  A  /\  A. x  e.  om  (
x  e.  A  ->  suc  x  e.  A ) )  ->  om  C_  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826    =/= wne 2577   A.wral 2732   E.wrex 2733    \ cdif 3386    i^i cin 3388    C_ wss 3389   (/)c0 3711   Ord word 4791   suc csuc 4794   omcom 6599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-tr 4461  df-eprel 4705  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-om 6600
This theorem is referenced by:  find  6624  finds  6625  finds2  6627  omex  7974  dfom3  7978
  Copyright terms: Public domain W3C validator