MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano4 Structured version   Unicode version

Theorem peano4 6729
Description: Two natural numbers are equal iff their successors are equal, i.e. the successor function is one-to-one. One of Peano's five postulates for arithmetic. Proposition 7.30(4) of [TakeutiZaring] p. 43. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
peano4  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem peano4
StepHypRef Expression
1 nnon 6712 . 2  |-  ( A  e.  om  ->  A  e.  On )
2 nnon 6712 . 2  |-  ( B  e.  om  ->  B  e.  On )
3 suc11 5545 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
41, 2, 3syl2an 479 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   Oncon0 5442   suc csuc 5444   omcom 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-tr 4521  df-eprel 4765  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-om 6707
This theorem is referenced by:  dif1en  7810  fseqdom  8455
  Copyright terms: Public domain W3C validator