MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pczpre Structured version   Unicode version

Theorem pczpre 14230
Description: Connect the prime count pre-function to the actual prime count function, when restricted to the integers. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
pczpre.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
Assertion
Ref Expression
pczpre  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  S )
Distinct variable groups:    n, N    P, n
Allowed substitution hint:    S( n)

Proof of Theorem pczpre
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zq 11188 . . 3  |-  ( N  e.  ZZ  ->  N  e.  QQ )
2 eqid 2467 . . . 4  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
3 eqid 2467 . . . 4  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
42, 3pcval 14227 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
51, 4sylanr1 652 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
6 simprl 755 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
76zcnd 10967 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  CC )
87div1d 10312 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( N  /  1
)  =  N )
98eqcomd 2475 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  =  ( N  /  1 ) )
10 prmuz2 14094 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
11 eqid 2467 . . . . . . . 8  |-  1  =  1
12 eqid 2467 . . . . . . . . 9  |-  { n  e.  NN0  |  ( P ^ n )  ||  1 }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  1 }
13 eqid 2467 . . . . . . . . 9  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  1 } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  )
1412, 13pcpre1 14225 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  1  =  1 )  ->  sup ( { n  e. 
NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  )  =  0 )
1510, 11, 14sylancl 662 . . . . . . 7  |-  ( P  e.  Prime  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  1 } ,  RR ,  <  )  =  0 )
1615adantr 465 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  sup ( { n  e. 
NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  )  =  0 )
1716oveq2d 6300 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  1 } ,  RR ,  <  )
)  =  ( S  -  0 ) )
18 eqid 2467 . . . . . . . . . 10  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  N }
19 pczpre.1 . . . . . . . . . 10  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  )
2018, 19pcprecl 14222 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
2110, 20sylan 471 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
2221simpld 459 . . . . . . 7  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
2322nn0cnd 10854 . . . . . 6  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  CC )
2423subid1d 9919 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  -  0 )  =  S )
2517, 24eqtr2d 2509 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) ) )
26 1nn 10547 . . . . 5  |-  1  e.  NN
27 oveq1 6291 . . . . . . . 8  |-  ( x  =  N  ->  (
x  /  y )  =  ( N  / 
y ) )
2827eqeq2d 2481 . . . . . . 7  |-  ( x  =  N  ->  ( N  =  ( x  /  y )  <->  N  =  ( N  /  y
) ) )
29 breq2 4451 . . . . . . . . . . . 12  |-  ( x  =  N  ->  (
( P ^ n
)  ||  x  <->  ( P ^ n )  ||  N ) )
3029rabbidv 3105 . . . . . . . . . . 11  |-  ( x  =  N  ->  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  N }
)
3130supeq1d 7906 . . . . . . . . . 10  |-  ( x  =  N  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  N } ,  RR ,  <  ) )
3231, 19syl6eqr 2526 . . . . . . . . 9  |-  ( x  =  N  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  S )
3332oveq1d 6299 . . . . . . . 8  |-  ( x  =  N  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( S  -  sup ( { n  e.  NN0  | 
( P ^ n
)  ||  y } ,  RR ,  <  )
) )
3433eqeq2d 2481 . . . . . . 7  |-  ( x  =  N  ->  ( S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
3528, 34anbi12d 710 . . . . . 6  |-  ( x  =  N  ->  (
( N  =  ( x  /  y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( N  =  ( N  / 
y )  /\  S  =  ( S  -  sup ( { n  e. 
NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) ) )
36 oveq2 6292 . . . . . . . 8  |-  ( y  =  1  ->  ( N  /  y )  =  ( N  /  1
) )
3736eqeq2d 2481 . . . . . . 7  |-  ( y  =  1  ->  ( N  =  ( N  /  y )  <->  N  =  ( N  /  1
) ) )
38 breq2 4451 . . . . . . . . . . 11  |-  ( y  =  1  ->  (
( P ^ n
)  ||  y  <->  ( P ^ n )  ||  1 ) )
3938rabbidv 3105 . . . . . . . . . 10  |-  ( y  =  1  ->  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  1 }
)
4039supeq1d 7906 . . . . . . . . 9  |-  ( y  =  1  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) )
4140oveq2d 6300 . . . . . . . 8  |-  ( y  =  1  ->  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  =  ( S  -  sup ( { n  e.  NN0  | 
( P ^ n
)  ||  1 } ,  RR ,  <  )
) )
4241eqeq2d 2481 . . . . . . 7  |-  ( y  =  1  ->  ( S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) )  <->  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  1 } ,  RR ,  <  )
) ) )
4337, 42anbi12d 710 . . . . . 6  |-  ( y  =  1  ->  (
( N  =  ( N  /  y )  /\  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( N  =  ( N  / 
1 )  /\  S  =  ( S  -  sup ( { n  e. 
NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) ) ) ) )
4435, 43rspc2ev 3225 . . . . 5  |-  ( ( N  e.  ZZ  /\  1  e.  NN  /\  ( N  =  ( N  /  1 )  /\  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
4526, 44mp3an2 1312 . . . 4  |-  ( ( N  e.  ZZ  /\  ( N  =  ( N  /  1 )  /\  S  =  ( S  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  1 } ,  RR ,  <  ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
466, 9, 25, 45syl12anc 1226 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )
47 ltso 9665 . . . . . 6  |-  <  Or  RR
4847supex 7923 . . . . 5  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  N } ,  RR ,  <  )  e.  _V
4919, 48eqeltri 2551 . . . 4  |-  S  e. 
_V
502, 3pceu 14229 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
511, 50sylanr1 652 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
52 eqeq1 2471 . . . . . . 7  |-  ( z  =  S  ->  (
z  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
)  <->  S  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )
5352anbi2d 703 . . . . . 6  |-  ( z  =  S  ->  (
( N  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( N  =  ( x  / 
y )  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) ) )
54532rexbidv 2980 . . . . 5  |-  ( z  =  S  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) ) )
5554iota2 5577 . . . 4  |-  ( ( S  e.  _V  /\  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  S ) )
5649, 51, 55sylancr 663 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  S  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) )  <->  ( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  ) ) ) )  =  S ) )
5746, 56mpbid 210 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( iota z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )
) ) )  =  S )
585, 57eqtrd 2508 1  |-  ( ( P  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E!weu 2275    =/= wne 2662   E.wrex 2815   {crab 2818   _Vcvv 3113   class class class wbr 4447   iotacio 5549   ` cfv 5588  (class class class)co 6284   supcsup 7900   RRcr 9491   0cc0 9492   1c1 9493    < clt 9628    - cmin 9805    / cdiv 10206   NNcn 10536   2c2 10585   NN0cn0 10795   ZZcz 10864   ZZ>=cuz 11082   QQcq 11182   ^cexp 12134    || cdivides 13847   Primecprime 14076    pCnt cpc 14219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-dvds 13848  df-gcd 14004  df-prm 14077  df-pc 14220
This theorem is referenced by:  pczcl  14231  pcmul  14234  pcdiv  14235  pc1  14238  pczdvds  14245  pczndvds  14247  pczndvds2  14249  pcneg  14256
  Copyright terms: Public domain W3C validator