MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcz Structured version   Unicode version

Theorem pcz 13939
Description: The prime count function can be used as an indicator that a given rational number is an integer. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
pcz  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
Distinct variable group:    A, p

Proof of Theorem pcz
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcge0 13920 . . . 4  |-  ( ( p  e.  Prime  /\  A  e.  ZZ )  ->  0  <_  ( p  pCnt  A
) )
21ancoms 453 . . 3  |-  ( ( A  e.  ZZ  /\  p  e.  Prime )  -> 
0  <_  ( p  pCnt  A ) )
32ralrimiva 2794 . 2  |-  ( A  e.  ZZ  ->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
)
4 elq 10947 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
5 nnz 10660 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  ZZ )
6 dvds0 13540 . . . . . . . . . . 11  |-  ( y  e.  ZZ  ->  y  ||  0 )
75, 6syl 16 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  ||  0 )
87ad2antlr 726 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  y  ||  0 )
9 simpr 461 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  x  = 
0 )
108, 9breqtrrd 4313 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  y  ||  x )
1110a1d 25 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =  0 )  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  y  ||  x ) )
12 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  p  e.  Prime )
13 simplll 757 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  x  e.  ZZ )
14 simplr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  x  =/=  0 )
15 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  y  e.  NN )
16 pcdiv 13911 . . . . . . . . . . . . 13  |-  ( ( p  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( p  pCnt  (
x  /  y ) )  =  ( ( p  pCnt  x )  -  ( p  pCnt  y ) ) )
1712, 13, 14, 15, 16syl121anc 1223 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  ( x  /  y ) )  =  ( ( p 
pCnt  x )  -  (
p  pCnt  y )
) )
1817breq2d 4299 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  ( x  /  y
) )  <->  0  <_  ( ( p  pCnt  x
)  -  ( p 
pCnt  y ) ) ) )
19 pczcl 13907 . . . . . . . . . . . . . 14  |-  ( ( p  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( p  pCnt  x )  e.  NN0 )
2012, 13, 14, 19syl12anc 1216 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  x )  e.  NN0 )
2120nn0red 10629 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  x )  e.  RR )
2212, 15pccld 13909 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  y )  e.  NN0 )
2322nn0red 10629 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
p  pCnt  y )  e.  RR )
2421, 23subge0d 9921 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( (
p  pCnt  x )  -  ( p  pCnt  y ) )  <->  ( p  pCnt  y )  <_  (
p  pCnt  x )
) )
2518, 24bitrd 253 . . . . . . . . . 10  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0 )  /\  p  e.  Prime )  ->  (
0  <_  ( p  pCnt  ( x  /  y
) )  <->  ( p  pCnt  y )  <_  (
p  pCnt  x )
) )
2625ralbidva 2726 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  <->  A. p  e.  Prime  ( p  pCnt  y )  <_  ( p  pCnt  x
) ) )
27 id 22 . . . . . . . . . . 11  |-  ( x  e.  ZZ  ->  x  e.  ZZ )
28 pc2dvds 13937 . . . . . . . . . . 11  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  ||  x  <->  A. p  e.  Prime  (
p  pCnt  y )  <_  ( p  pCnt  x
) ) )
295, 27, 28syl2anr 478 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y  ||  x  <->  A. p  e.  Prime  (
p  pCnt  y )  <_  ( p  pCnt  x
) ) )
3029adantr 465 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( y  ||  x  <->  A. p  e.  Prime  ( p  pCnt  y )  <_  ( p  pCnt  x
) ) )
3126, 30bitr4d 256 . . . . . . . 8  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  <->  y  ||  x
) )
3231biimpd 207 . . . . . . 7  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  y  ||  x ) )
3311, 32pm2.61dane 2684 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A. p  e. 
Prime  0  <_  ( p 
pCnt  ( x  / 
y ) )  -> 
y  ||  x )
)
345adantl 466 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  e.  ZZ )
35 nnne0 10346 . . . . . . . 8  |-  ( y  e.  NN  ->  y  =/=  0 )
3635adantl 466 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  =/=  0 )
37 simpl 457 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  x  e.  ZZ )
38 dvdsval2 13530 . . . . . . 7  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  x  e.  ZZ )  ->  (
y  ||  x  <->  ( x  /  y )  e.  ZZ ) )
3934, 36, 37, 38syl3anc 1218 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( y  ||  x  <->  ( x  /  y )  e.  ZZ ) )
4033, 39sylibd 214 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A. p  e. 
Prime  0  <_  ( p 
pCnt  ( x  / 
y ) )  -> 
( x  /  y
)  e.  ZZ ) )
41 oveq2 6094 . . . . . . . 8  |-  ( A  =  ( x  / 
y )  ->  (
p  pCnt  A )  =  ( p  pCnt  ( x  /  y ) ) )
4241breq2d 4299 . . . . . . 7  |-  ( A  =  ( x  / 
y )  ->  (
0  <_  ( p  pCnt  A )  <->  0  <_  ( p  pCnt  ( x  /  y ) ) ) )
4342ralbidv 2730 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  <->  A. p  e.  Prime  0  <_  ( p  pCnt  ( x  /  y ) ) ) )
44 eleq1 2498 . . . . . 6  |-  ( A  =  ( x  / 
y )  ->  ( A  e.  ZZ  <->  ( x  /  y )  e.  ZZ ) )
4543, 44imbi12d 320 . . . . 5  |-  ( A  =  ( x  / 
y )  ->  (
( A. p  e. 
Prime  0  <_  ( p 
pCnt  A )  ->  A  e.  ZZ )  <->  ( A. p  e.  Prime  0  <_ 
( p  pCnt  (
x  /  y ) )  ->  ( x  /  y )  e.  ZZ ) ) )
4640, 45syl5ibrcom 222 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( A. p  e.  Prime  0  <_  (
p  pCnt  A )  ->  A  e.  ZZ ) ) )
4746rexlimivv 2841 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  ->  A  e.  ZZ ) )
484, 47sylbi 195 . 2  |-  ( A  e.  QQ  ->  ( A. p  e.  Prime  0  <_  ( p  pCnt  A )  ->  A  e.  ZZ ) )
493, 48impbid2 204 1  |-  ( A  e.  QQ  ->  ( A  e.  ZZ  <->  A. p  e.  Prime  0  <_  (
p  pCnt  A )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711   class class class wbr 4287  (class class class)co 6086   0cc0 9274    <_ cle 9411    - cmin 9587    / cdiv 9985   NNcn 10314   NN0cn0 10571   ZZcz 10638   QQcq 10945    || cdivides 13527   Primecprime 13755    pCnt cpc 13895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-fz 11430  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-dvds 13528  df-gcd 13683  df-prm 13756  df-pc 13896
This theorem is referenced by:  pcmptdvds  13948  qexpz  13955
  Copyright terms: Public domain W3C validator