MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcxcl Structured version   Unicode version

Theorem pcxcl 13925
Description: Extended real closure of the general prime count function. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcxcl  |-  ( ( P  e.  Prime  /\  N  e.  QQ )  ->  ( P  pCnt  N )  e. 
RR* )

Proof of Theorem pcxcl
StepHypRef Expression
1 pc0 13919 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  = +oo )
2 pnfxr 11090 . . . . 5  |- +oo  e.  RR*
31, 2syl6eqel 2529 . . . 4  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  e. 
RR* )
43adantr 465 . . 3  |-  ( ( P  e.  Prime  /\  N  e.  QQ )  ->  ( P  pCnt  0 )  e. 
RR* )
5 oveq2 6097 . . . 4  |-  ( N  =  0  ->  ( P  pCnt  N )  =  ( P  pCnt  0
) )
65eleq1d 2507 . . 3  |-  ( N  =  0  ->  (
( P  pCnt  N
)  e.  RR*  <->  ( P  pCnt  0 )  e.  RR* ) )
74, 6syl5ibrcom 222 . 2  |-  ( ( P  e.  Prime  /\  N  e.  QQ )  ->  ( N  =  0  ->  ( P  pCnt  N )  e.  RR* ) )
8 pcqcl 13921 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  e.  ZZ )
98zred 10745 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  e.  RR )
109rexrd 9431 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( P  pCnt  N
)  e.  RR* )
1110expr 615 . 2  |-  ( ( P  e.  Prime  /\  N  e.  QQ )  ->  ( N  =/=  0  ->  ( P  pCnt  N )  e. 
RR* ) )
127, 11pm2.61dne 2686 1  |-  ( ( P  e.  Prime  /\  N  e.  QQ )  ->  ( P  pCnt  N )  e. 
RR* )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2604  (class class class)co 6089   0cc0 9280   +oocpnf 9413   RR*cxr 9415   QQcq 10951   Primecprime 13761    pCnt cpc 13901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-cnex 9336  ax-resscn 9337  ax-1cn 9338  ax-icn 9339  ax-addcl 9340  ax-addrcl 9341  ax-mulcl 9342  ax-mulrcl 9343  ax-mulcom 9344  ax-addass 9345  ax-mulass 9346  ax-distr 9347  ax-i2m1 9348  ax-1ne0 9349  ax-1rid 9350  ax-rnegex 9351  ax-rrecex 9352  ax-cnre 9353  ax-pre-lttri 9354  ax-pre-lttrn 9355  ax-pre-ltadd 9356  ax-pre-mulgt0 9357  ax-pre-sup 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-int 4127  df-iun 4171  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-riota 6050  df-ov 6092  df-oprab 6093  df-mpt2 6094  df-om 6475  df-1st 6575  df-2nd 6576  df-recs 6830  df-rdg 6864  df-1o 6918  df-2o 6919  df-oadd 6922  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-sup 7689  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422  df-sub 9595  df-neg 9596  df-div 9992  df-nn 10321  df-2 10378  df-3 10379  df-n0 10578  df-z 10645  df-uz 10860  df-q 10952  df-rp 10990  df-fl 11640  df-mod 11707  df-seq 11805  df-exp 11864  df-cj 12586  df-re 12587  df-im 12588  df-sqr 12722  df-abs 12723  df-dvds 13534  df-gcd 13689  df-prm 13762  df-pc 13902
This theorem is referenced by:  pcdvdstr  13940  pcgcd1  13941  pcgcd  13942  pc2dvds  13943  pc11  13944  pcadd  13949  pcadd2  13950
  Copyright terms: Public domain W3C validator