MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcqmul Structured version   Unicode version

Theorem pcqmul 13912
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014.)
Assertion
Ref Expression
pcqmul  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )

Proof of Theorem pcqmul
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1014 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  e.  QQ )
2 elq 10947 . . 3  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
31, 2sylib 196 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y ) )
4 simp3l 1016 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  e.  QQ )
5 elq 10947 . . 3  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
64, 5sylib 196 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
7 reeanv 2883 . . 3  |-  ( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  <->  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) ) )
8 reeanv 2883 . . . . 5  |-  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  <->  ( E. y  e.  NN  A  =  ( x  / 
y )  /\  E. w  e.  NN  B  =  ( z  /  w ) ) )
9 simp2r 1015 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  A  =/=  0 )
10 simp3r 1017 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  B  =/=  0 )
119, 10jca 532 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( A  =/=  0  /\  B  =/=  0
) )
1211ad2antrr 725 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( A  =/=  0  /\  B  =/=  0
) )
13 simp1 988 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  P  e.  Prime )
14 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
y  e.  NN )
1514nncnd 10330 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
y  e.  CC )
1614nnne0d 10358 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
y  =/=  0 )
1715, 16div0d 10098 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( 0  /  y
)  =  0 )
18 oveq1 6093 . . . . . . . . . . . . 13  |-  ( x  =  0  ->  (
x  /  y )  =  ( 0  / 
y ) )
1918eqeq1d 2446 . . . . . . . . . . . 12  |-  ( x  =  0  ->  (
( x  /  y
)  =  0  <->  (
0  /  y )  =  0 ) )
2017, 19syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( x  =  0  ->  ( x  / 
y )  =  0 ) )
2120necon3d 2641 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  =/=  0  ->  x  =/=  0 ) )
22 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  ->  w  e.  NN )
2322nncnd 10330 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  ->  w  e.  CC )
2422nnne0d 10358 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  ->  w  =/=  0 )
2523, 24div0d 10098 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( 0  /  w
)  =  0 )
26 oveq1 6093 . . . . . . . . . . . . 13  |-  ( z  =  0  ->  (
z  /  w )  =  ( 0  /  w ) )
2726eqeq1d 2446 . . . . . . . . . . . 12  |-  ( z  =  0  ->  (
( z  /  w
)  =  0  <->  (
0  /  w )  =  0 ) )
2825, 27syl5ibrcom 222 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( z  =  0  ->  ( z  /  w )  =  0 ) )
2928necon3d 2641 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( z  /  w )  =/=  0  ->  z  =/=  0 ) )
30 simpll 753 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  P  e.  Prime )
31 simplrl 759 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  x  e.  ZZ )
32 simplrr 760 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
z  e.  ZZ )
3331, 32zmulcld 10745 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( x  x.  z
)  e.  ZZ )
3431zcnd 10740 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  x  e.  CC )
3532zcnd 10740 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
z  e.  CC )
36 simprrl 763 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  x  =/=  0 )
37 simprrr 764 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
z  =/=  0 )
3834, 35, 36, 37mulne0d 9980 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( x  x.  z
)  =/=  0 )
3914adantrr 716 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  e.  NN )
4022adantrr 716 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  e.  NN )
4139, 40nnmulcld 10361 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( y  x.  w
)  e.  NN )
42 pcdiv 13911 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
( x  x.  z
)  e.  ZZ  /\  ( x  x.  z
)  =/=  0 )  /\  ( y  x.  w )  e.  NN )  ->  ( P  pCnt  ( ( x  x.  z
)  /  ( y  x.  w ) ) )  =  ( ( P  pCnt  ( x  x.  z ) )  -  ( P  pCnt  ( y  x.  w ) ) ) )
4330, 33, 38, 41, 42syl121anc 1223 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  x.  z
)  /  ( y  x.  w ) ) )  =  ( ( P  pCnt  ( x  x.  z ) )  -  ( P  pCnt  ( y  x.  w ) ) ) )
44 pcmul 13910 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  ( z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P  pCnt  ( x  x.  z
) )  =  ( ( P  pCnt  x
)  +  ( P 
pCnt  z ) ) )
4530, 31, 36, 32, 37, 44syl122anc 1227 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
x  x.  z ) )  =  ( ( P  pCnt  x )  +  ( P  pCnt  z ) ) )
4639nnzd 10738 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  e.  ZZ )
4716adantrr 716 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  =/=  0 )
4840nnzd 10738 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  e.  ZZ )
4924adantrr 716 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  =/=  0 )
50 pcmul 13910 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  Prime  /\  (
y  e.  ZZ  /\  y  =/=  0 )  /\  ( w  e.  ZZ  /\  w  =/=  0 ) )  ->  ( P  pCnt  ( y  x.  w
) )  =  ( ( P  pCnt  y
)  +  ( P 
pCnt  w ) ) )
5130, 46, 47, 48, 49, 50syl122anc 1227 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
y  x.  w ) )  =  ( ( P  pCnt  y )  +  ( P  pCnt  w ) ) )
5245, 51oveq12d 6104 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( P  pCnt  ( x  x.  z ) )  -  ( P 
pCnt  ( y  x.  w ) ) )  =  ( ( ( P  pCnt  x )  +  ( P  pCnt  z ) )  -  (
( P  pCnt  y
)  +  ( P 
pCnt  w ) ) ) )
53 pczcl 13907 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( P  pCnt  x )  e.  NN0 )
5430, 31, 36, 53syl12anc 1216 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  x
)  e.  NN0 )
5554nn0cnd 10630 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  x
)  e.  CC )
56 pczcl 13907 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 ) )  ->  ( P  pCnt  z )  e.  NN0 )
5730, 32, 37, 56syl12anc 1216 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  z
)  e.  NN0 )
5857nn0cnd 10630 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  z
)  e.  CC )
5930, 39pccld 13909 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  y
)  e.  NN0 )
6059nn0cnd 10630 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  y
)  e.  CC )
6130, 40pccld 13909 . . . . . . . . . . . . . . 15  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  w
)  e.  NN0 )
6261nn0cnd 10630 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  w
)  e.  CC )
6355, 58, 60, 62addsub4d 9758 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( ( P 
pCnt  x )  +  ( P  pCnt  z )
)  -  ( ( P  pCnt  y )  +  ( P  pCnt  w ) ) )  =  ( ( ( P 
pCnt  x )  -  ( P  pCnt  y ) )  +  ( ( P 
pCnt  z )  -  ( P  pCnt  w ) ) ) )
6443, 52, 633eqtrd 2474 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  x.  z
)  /  ( y  x.  w ) ) )  =  ( ( ( P  pCnt  x
)  -  ( P 
pCnt  y ) )  +  ( ( P 
pCnt  z )  -  ( P  pCnt  w ) ) ) )
6515adantrr 716 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
y  e.  CC )
6623adantrr 716 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  ->  w  e.  CC )
6734, 65, 35, 66, 47, 49divmuldivd 10140 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( x  / 
y )  x.  (
z  /  w ) )  =  ( ( x  x.  z )  /  ( y  x.  w ) ) )
6867oveq2d 6102 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  /  y
)  x.  ( z  /  w ) ) )  =  ( P 
pCnt  ( ( x  x.  z )  / 
( y  x.  w
) ) ) )
69 pcdiv 13911 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  x  =/=  0 )  /\  y  e.  NN )  ->  ( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
7030, 31, 36, 39, 69syl121anc 1223 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
x  /  y ) )  =  ( ( P  pCnt  x )  -  ( P  pCnt  y ) ) )
71 pcdiv 13911 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
z  e.  ZZ  /\  z  =/=  0 )  /\  w  e.  NN )  ->  ( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
7230, 32, 37, 40, 71syl121anc 1223 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
z  /  w ) )  =  ( ( P  pCnt  z )  -  ( P  pCnt  w ) ) )
7370, 72oveq12d 6104 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) )  =  ( ( ( P  pCnt  x )  -  ( P  pCnt  y ) )  +  ( ( P  pCnt  z
)  -  ( P 
pCnt  w ) ) ) )
7464, 68, 733eqtr4d 2480 . . . . . . . . . . 11  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( ( y  e.  NN  /\  w  e.  NN )  /\  ( x  =/=  0  /\  z  =/=  0
) ) )  -> 
( P  pCnt  (
( x  /  y
)  x.  ( z  /  w ) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P  pCnt  ( z  /  w ) ) ) )
7574expr 615 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  =/=  0  /\  z  =/=  0 )  ->  ( P  pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) )
7621, 29, 75syl2and 483 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( ( x  /  y )  =/=  0  /\  ( z  /  w )  =/=  0 )  ->  ( P  pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) )
77 neeq1 2611 . . . . . . . . . . 11  |-  ( A  =  ( x  / 
y )  ->  ( A  =/=  0  <->  ( x  /  y )  =/=  0 ) )
78 neeq1 2611 . . . . . . . . . . 11  |-  ( B  =  ( z  /  w )  ->  ( B  =/=  0  <->  ( z  /  w )  =/=  0
) )
7977, 78bi2anan9 868 . . . . . . . . . 10  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( A  =/=  0  /\  B  =/=  0 )  <->  ( (
x  /  y )  =/=  0  /\  (
z  /  w )  =/=  0 ) ) )
80 oveq12 6095 . . . . . . . . . . . 12  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  x.  B
)  =  ( ( x  /  y )  x.  ( z  /  w ) ) )
8180oveq2d 6102 . . . . . . . . . . 11  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( P 
pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) ) )
82 oveq2 6094 . . . . . . . . . . . 12  |-  ( A  =  ( x  / 
y )  ->  ( P  pCnt  A )  =  ( P  pCnt  (
x  /  y ) ) )
83 oveq2 6094 . . . . . . . . . . . 12  |-  ( B  =  ( z  /  w )  ->  ( P  pCnt  B )  =  ( P  pCnt  (
z  /  w ) ) )
8482, 83oveqan12d 6105 . . . . . . . . . . 11  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( P  pCnt  A )  +  ( P 
pCnt  B ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) )
8581, 84eqeq12d 2452 . . . . . . . . . 10  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) )  <->  ( P  pCnt  ( ( x  / 
y )  x.  (
z  /  w ) ) )  =  ( ( P  pCnt  (
x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) )
8679, 85imbi12d 320 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( ( ( A  =/=  0  /\  B  =/=  0 )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P 
pCnt  B ) ) )  <-> 
( ( ( x  /  y )  =/=  0  /\  ( z  /  w )  =/=  0 )  ->  ( P  pCnt  ( ( x  /  y )  x.  ( z  /  w
) ) )  =  ( ( P  pCnt  ( x  /  y ) )  +  ( P 
pCnt  ( z  /  w ) ) ) ) ) )
8776, 86syl5ibrcom 222 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  (
( A  =/=  0  /\  B  =/=  0
)  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) ) )
8813, 87sylanl1 650 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  (
( A  =/=  0  /\  B  =/=  0
)  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) ) )
8912, 88mpid 41 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P 
pCnt  B ) ) ) )
9089rexlimdvva 2843 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( E. y  e.  NN  E. w  e.  NN  ( A  =  ( x  /  y
)  /\  B  =  ( z  /  w
) )  ->  ( P  pCnt  ( A  x.  B ) )  =  ( ( P  pCnt  A )  +  ( P 
pCnt  B ) ) ) )
918, 90syl5bir 218 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  /\  ( x  e.  ZZ  /\  z  e.  ZZ ) )  ->  ( ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) ) )
9291rexlimdvva 2843 . . 3  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. z  e.  ZZ  ( E. y  e.  NN  A  =  ( x  /  y )  /\  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) )
937, 92syl5bir 218 . 2  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( P  pCnt  ( A  x.  B
) )  =  ( ( P  pCnt  A
)  +  ( P 
pCnt  B ) ) ) )
943, 6, 93mp2and 679 1  |-  ( ( P  e.  Prime  /\  ( A  e.  QQ  /\  A  =/=  0 )  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  -> 
( P  pCnt  ( A  x.  B )
)  =  ( ( P  pCnt  A )  +  ( P  pCnt  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2601   E.wrex 2711  (class class class)co 6086   CCcc 9272   0cc0 9274    + caddc 9277    x. cmul 9279    - cmin 9587    / cdiv 9985   NNcn 10314   NN0cn0 10571   ZZcz 10638   QQcq 10945   Primecprime 13755    pCnt cpc 13895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-n0 10572  df-z 10639  df-uz 10854  df-q 10946  df-rp 10984  df-fl 11634  df-mod 11701  df-seq 11799  df-exp 11858  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-dvds 13528  df-gcd 13683  df-prm 13756  df-pc 13896
This theorem is referenced by:  pcqdiv  13916  pcexp  13918  pcaddlem  13942  sylow1lem1  16088  padicabv  22854
  Copyright terms: Public domain W3C validator