MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprendvds2 Structured version   Unicode version

Theorem pcprendvds2 14574
Description: Non-divisibility property of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcprendvds2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ S ) ) )
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcprendvds2
StepHypRef Expression
1 pclem.1 . . 3  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
2 pclem.2 . . 3  |-  S  =  sup ( A ,  RR ,  <  )
31, 2pcprendvds 14573 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  ( P ^ ( S  +  1 ) )  ||  N )
4 eluz2nn 11165 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
54adantr 463 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  NN )
65nnzd 11007 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  ZZ )
71, 2pcprecl 14572 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
87simprd 461 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  ||  N )
97simpld 457 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
105, 9nnexpcld 12375 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  NN )
1110nnzd 11007 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  ZZ )
1210nnne0d 10621 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  =/=  0 )
13 simprl 756 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  ZZ )
14 dvdsval2 14198 . . . . . 6  |-  ( ( ( P ^ S
)  e.  ZZ  /\  ( P ^ S )  =/=  0  /\  N  e.  ZZ )  ->  (
( P ^ S
)  ||  N  <->  ( N  /  ( P ^ S ) )  e.  ZZ ) )
1511, 12, 13, 14syl3anc 1230 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  ||  N  <->  ( N  /  ( P ^ S ) )  e.  ZZ ) )
168, 15mpbid 210 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( N  /  ( P ^ S ) )  e.  ZZ )
17 dvdscmul 14219 . . . 4  |-  ( ( P  e.  ZZ  /\  ( N  /  ( P ^ S ) )  e.  ZZ  /\  ( P ^ S )  e.  ZZ )  ->  ( P  ||  ( N  / 
( P ^ S
) )  ->  (
( P ^ S
)  x.  P ) 
||  ( ( P ^ S )  x.  ( N  /  ( P ^ S ) ) ) ) )
186, 16, 11, 17syl3anc 1230 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  ||  ( N  /  ( P ^ S ) )  -> 
( ( P ^ S )  x.  P
)  ||  ( ( P ^ S )  x.  ( N  /  ( P ^ S ) ) ) ) )
195nncnd 10592 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  CC )
2019, 9expp1d 12355 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ ( S  +  1 ) )  =  ( ( P ^ S )  x.  P ) )
2120eqcomd 2410 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  x.  P
)  =  ( P ^ ( S  + 
1 ) ) )
22 zcn 10910 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  CC )
2322ad2antrl 726 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  N  e.  CC )
2410nncnd 10592 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ S
)  e.  CC )
2523, 24, 12divcan2d 10363 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( P ^ S )  x.  ( N  /  ( P ^ S ) ) )  =  N )
2621, 25breq12d 4408 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( ( ( P ^ S )  x.  P )  ||  (
( P ^ S
)  x.  ( N  /  ( P ^ S ) ) )  <-> 
( P ^ ( S  +  1 ) )  ||  N ) )
2718, 26sylibd 214 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P  ||  ( N  /  ( P ^ S ) )  -> 
( P ^ ( S  +  1 ) )  ||  N ) )
283, 27mtod 177 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  -.  P  ||  ( N  /  ( P ^ S ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   {crab 2758   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   supcsup 7934   CCcc 9520   RRcr 9521   0cc0 9522   1c1 9523    + caddc 9525    x. cmul 9527    < clt 9658    / cdiv 10247   NNcn 10576   2c2 10626   NN0cn0 10836   ZZcz 10905   ZZ>=cuz 11127   ^cexp 12210    || cdvds 14195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-rp 11266  df-fl 11966  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-dvds 14196
This theorem is referenced by:  pcpremul  14576  pczndvds2  14599
  Copyright terms: Public domain W3C validator