MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcprecl Structured version   Unicode version

Theorem pcprecl 14345
Description: Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcprecl  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcprecl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclem.2 . . 3  |-  S  =  sup ( A ,  RR ,  <  )
2 pclem.1 . . . . 5  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
32pclem 14344 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( A  C_  ZZ  /\  A  =/=  (/)  /\  E. y  e.  ZZ  A. z  e.  A  z  <_  y ) )
4 suprzcl2 11183 . . . 4  |-  ( ( A  C_  ZZ  /\  A  =/=  (/)  /\  E. y  e.  ZZ  A. z  e.  A  z  <_  y
)  ->  sup ( A ,  RR ,  <  )  e.  A )
53, 4syl 16 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  sup ( A ,  RR ,  <  )  e.  A
)
61, 5syl5eqel 2535 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  A )
7 oveq2 6289 . . . 4  |-  ( x  =  S  ->  ( P ^ x )  =  ( P ^ S
) )
87breq1d 4447 . . 3  |-  ( x  =  S  ->  (
( P ^ x
)  ||  N  <->  ( P ^ S )  ||  N
) )
9 oveq2 6289 . . . . . 6  |-  ( n  =  x  ->  ( P ^ n )  =  ( P ^ x
) )
109breq1d 4447 . . . . 5  |-  ( n  =  x  ->  (
( P ^ n
)  ||  N  <->  ( P ^ x )  ||  N ) )
1110cbvrabv 3094 . . . 4  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  =  {
x  e.  NN0  | 
( P ^ x
)  ||  N }
122, 11eqtri 2472 . . 3  |-  A  =  { x  e.  NN0  |  ( P ^ x
)  ||  N }
138, 12elrab2 3245 . 2  |-  ( S  e.  A  <->  ( S  e.  NN0  /\  ( P ^ S )  ||  N ) )
146, 13sylib 196 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   {crab 2797    C_ wss 3461   (/)c0 3770   class class class wbr 4437   ` cfv 5578  (class class class)co 6281   supcsup 7902   RRcr 9494   0cc0 9495    < clt 9631    <_ cle 9632   2c2 10592   NN0cn0 10802   ZZcz 10871   ZZ>=cuz 11092   ^cexp 12148    || cdvds 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11093  df-rp 11232  df-fl 11911  df-seq 12090  df-exp 12149  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-dvds 13969
This theorem is referenced by:  pcprendvds  14346  pcprendvds2  14347  pcpre1  14348  pcpremul  14349  pceulem  14351  pczpre  14353  pczcl  14354  pczdvds  14368
  Copyright terms: Public domain W3C validator