MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcpre1 Structured version   Unicode version

Theorem pcpre1 14755
Description: Value of the prime power pre-function at 1. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
pclem.2  |-  S  =  sup ( A ,  RR ,  <  )
Assertion
Ref Expression
pcpre1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  =  0 )
Distinct variable groups:    n, N    P, n
Allowed substitution hints:    A( n)    S( n)

Proof of Theorem pcpre1
StepHypRef Expression
1 1z 10967 . . . . . . . . . 10  |-  1  e.  ZZ
2 eleq1 2501 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  e.  ZZ  <->  1  e.  ZZ ) )
31, 2mpbiri 236 . . . . . . . . 9  |-  ( N  =  1  ->  N  e.  ZZ )
4 ax-1ne0 9607 . . . . . . . . . 10  |-  1  =/=  0
5 neeq1 2712 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  =/=  0  <->  1  =/=  0 ) )
64, 5mpbiri 236 . . . . . . . . 9  |-  ( N  =  1  ->  N  =/=  0 )
73, 6jca 534 . . . . . . . 8  |-  ( N  =  1  ->  ( N  e.  ZZ  /\  N  =/=  0 ) )
8 pclem.1 . . . . . . . . 9  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
9 pclem.2 . . . . . . . . 9  |-  S  =  sup ( A ,  RR ,  <  )
108, 9pcprecl 14752 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
117, 10sylan2 476 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( S  e.  NN0  /\  ( P ^ S
)  ||  N )
)
1211simprd 464 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  ||  N )
13 simpr 462 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  N  =  1 )
1412, 13breqtrd 4450 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  ||  1 )
15 eluz2nn 11197 . . . . . . . . 9  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
1615adantr 466 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  P  e.  NN )
1711simpld 460 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  e.  NN0 )
1816, 17nnexpcld 12434 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  e.  NN )
1918nnzd 11039 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  e.  ZZ )
20 1nn 10620 . . . . . 6  |-  1  e.  NN
21 dvdsle 14328 . . . . . 6  |-  ( ( ( P ^ S
)  e.  ZZ  /\  1  e.  NN )  ->  ( ( P ^ S )  ||  1  ->  ( P ^ S
)  <_  1 ) )
2219, 20, 21sylancl 666 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( ( P ^ S )  ||  1  ->  ( P ^ S
)  <_  1 ) )
2314, 22mpd 15 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  <_  1 )
2416nncnd 10625 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  P  e.  CC )
2524exp0d 12407 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ 0 )  =  1 )
2623, 25breqtrrd 4452 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( P ^ S
)  <_  ( P ^ 0 ) )
2716nnred 10624 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  P  e.  RR )
2817nn0zd 11038 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  e.  ZZ )
29 0zd 10949 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
0  e.  ZZ )
30 eluz2b2 11231 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
3130simprbi 465 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
3231adantr 466 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
1  <  P )
3327, 28, 29, 32leexp2d 12443 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( S  <_  0  <->  ( P ^ S )  <_  ( P ^
0 ) ) )
3426, 33mpbird 235 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  <_  0 )
3510simpld 460 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  S  e.  NN0 )
367, 35sylan2 476 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  e.  NN0 )
37 nn0le0eq0 10898 . . 3  |-  ( S  e.  NN0  ->  ( S  <_  0  <->  S  = 
0 ) )
3836, 37syl 17 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  -> 
( S  <_  0  <->  S  =  0 ) )
3934, 38mpbid 213 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  N  =  1 )  ->  S  =  0 )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   {crab 2786   class class class wbr 4426   ` cfv 5601  (class class class)co 6305   supcsup 7960   RRcr 9537   0cc0 9538   1c1 9539    < clt 9674    <_ cle 9675   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   ^cexp 12269    || cdvds 14283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-inf 7963  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fl 12025  df-seq 12211  df-exp 12270  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-dvds 14284
This theorem is referenced by:  pczpre  14760  pc1  14768
  Copyright terms: Public domain W3C validator