MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcovalg Structured version   Unicode version

Theorem pcovalg 21936
Description: Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pcoval.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
Assertion
Ref Expression
pcovalg  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  if ( X  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  X ) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )

Proof of Theorem pcovalg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pcoval.2 . . . 4  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
2 pcoval.3 . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
31, 2pcoval 21935 . . 3  |-  ( ph  ->  ( F ( *p
`  J ) G )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
43fveq1d 5883 . 2  |-  ( ph  ->  ( ( F ( *p `  J ) G ) `  X
)  =  ( ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  x
) ) ,  ( G `  ( ( 2  x.  x )  -  1 ) ) ) ) `  X
) )
5 breq1 4429 . . . 4  |-  ( x  =  X  ->  (
x  <_  ( 1  /  2 )  <->  X  <_  ( 1  /  2 ) ) )
6 oveq2 6313 . . . . 5  |-  ( x  =  X  ->  (
2  x.  x )  =  ( 2  x.  X ) )
76fveq2d 5885 . . . 4  |-  ( x  =  X  ->  ( F `  ( 2  x.  x ) )  =  ( F `  (
2  x.  X ) ) )
86oveq1d 6320 . . . . 5  |-  ( x  =  X  ->  (
( 2  x.  x
)  -  1 )  =  ( ( 2  x.  X )  - 
1 ) )
98fveq2d 5885 . . . 4  |-  ( x  =  X  ->  ( G `  ( (
2  x.  x )  -  1 ) )  =  ( G `  ( ( 2  x.  X )  -  1 ) ) )
105, 7, 9ifbieq12d 3942 . . 3  |-  ( x  =  X  ->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) )  =  if ( X  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  X ) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )
11 eqid 2429 . . 3  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( G `
 ( ( 2  x.  x )  - 
1 ) ) ) )
12 fvex 5891 . . . 4  |-  ( F `
 ( 2  x.  X ) )  e. 
_V
13 fvex 5891 . . . 4  |-  ( G `
 ( ( 2  x.  X )  - 
1 ) )  e. 
_V
1412, 13ifex 3983 . . 3  |-  if ( X  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  X ) ) ,  ( G `
 ( ( 2  x.  X )  - 
1 ) ) )  e.  _V
1510, 11, 14fvmpt 5964 . 2  |-  ( X  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( G `  (
( 2  x.  x
)  -  1 ) ) ) ) `  X )  =  if ( X  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  X
) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )
164, 15sylan9eq 2490 1  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  if ( X  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  X ) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870   ifcif 3915   class class class wbr 4426    |-> cmpt 4484   ` cfv 5601  (class class class)co 6305   0cc0 9538   1c1 9539    x. cmul 9543    <_ cle 9675    - cmin 9859    / cdiv 10268   2c2 10659   [,]cicc 11638    Cn ccn 20171   IIcii 21803   *pcpco 21924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7482  df-top 19852  df-topon 19854  df-cn 20174  df-pco 21929
This theorem is referenced by:  pcoval1  21937  pcoval2  21940  pcohtpylem  21943
  Copyright terms: Public domain W3C validator