MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval2 Structured version   Visualization version   Unicode version

Theorem pcoval2 22040
Description: Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
pcoval.3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
pcoval2.4  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
Assertion
Ref Expression
pcoval2  |-  ( (
ph  /\  X  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  ( G `  ( ( 2  x.  X )  -  1 ) ) )

Proof of Theorem pcoval2
StepHypRef Expression
1 0re 9640 . . . . 5  |-  0  e.  RR
2 1re 9639 . . . . 5  |-  1  e.  RR
3 halfre 10825 . . . . . 6  |-  ( 1  /  2 )  e.  RR
4 halfgt0 10827 . . . . . 6  |-  0  <  ( 1  /  2
)
51, 3, 4ltleii 9754 . . . . 5  |-  0  <_  ( 1  /  2
)
6 1le1 10237 . . . . 5  |-  1  <_  1
7 iccss 11699 . . . . 5  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( 0  <_ 
( 1  /  2
)  /\  1  <_  1 ) )  ->  (
( 1  /  2
) [,] 1 ) 
C_  ( 0 [,] 1 ) )
81, 2, 5, 6, 7mp4an 678 . . . 4  |-  ( ( 1  /  2 ) [,] 1 )  C_  ( 0 [,] 1
)
98sseli 3427 . . 3  |-  ( X  e.  ( ( 1  /  2 ) [,] 1 )  ->  X  e.  ( 0 [,] 1
) )
10 pcoval.2 . . . 4  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
11 pcoval.3 . . . 4  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
1210, 11pcovalg 22036 . . 3  |-  ( (
ph  /\  X  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  if ( X  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  X ) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )
139, 12sylan2 477 . 2  |-  ( (
ph  /\  X  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  if ( X  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  X ) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )
14 pcoval2.4 . . . . . . . 8  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
1514adantr 467 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  ( F `  1 )  =  ( G ` 
0 ) )
16 simprr 765 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  X  <_  ( 1  /  2
) )
173, 2elicc2i 11697 . . . . . . . . . . . . 13  |-  ( X  e.  ( ( 1  /  2 ) [,] 1 )  <->  ( X  e.  RR  /\  ( 1  /  2 )  <_  X  /\  X  <_  1
) )
1817simp2bi 1023 . . . . . . . . . . . 12  |-  ( X  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
1  /  2 )  <_  X )
1918ad2antrl 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  (
1  /  2 )  <_  X )
2017simp1bi 1022 . . . . . . . . . . . . 13  |-  ( X  e.  ( ( 1  /  2 ) [,] 1 )  ->  X  e.  RR )
2120ad2antrl 733 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  X  e.  RR )
22 letri3 9716 . . . . . . . . . . . 12  |-  ( ( X  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( X  =  ( 1  /  2
)  <->  ( X  <_ 
( 1  /  2
)  /\  ( 1  /  2 )  <_  X ) ) )
2321, 3, 22sylancl 667 . . . . . . . . . . 11  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  ( X  =  ( 1  /  2 )  <->  ( X  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_  X ) ) )
2416, 19, 23mpbir2and 932 . . . . . . . . . 10  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  X  =  ( 1  / 
2 ) )
2524oveq2d 6304 . . . . . . . . 9  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  (
2  x.  X )  =  ( 2  x.  ( 1  /  2
) ) )
26 2cn 10677 . . . . . . . . . 10  |-  2  e.  CC
27 2ne0 10699 . . . . . . . . . 10  |-  2  =/=  0
2826, 27recidi 10335 . . . . . . . . 9  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
2925, 28syl6eq 2500 . . . . . . . 8  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  (
2  x.  X )  =  1 )
3029fveq2d 5867 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  ( F `  ( 2  x.  X ) )  =  ( F `  1
) )
3129oveq1d 6303 . . . . . . . . 9  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  (
( 2  x.  X
)  -  1 )  =  ( 1  -  1 ) )
32 1m1e0 10675 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
3331, 32syl6eq 2500 . . . . . . . 8  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  (
( 2  x.  X
)  -  1 )  =  0 )
3433fveq2d 5867 . . . . . . 7  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  ( G `  ( (
2  x.  X )  -  1 ) )  =  ( G ` 
0 ) )
3515, 30, 343eqtr4d 2494 . . . . . 6  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  ( F `  ( 2  x.  X ) )  =  ( G `  (
( 2  x.  X
)  -  1 ) ) )
3635ifeq1d 3898 . . . . 5  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  if ( X  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  X ) ) ,  ( G `
 ( ( 2  x.  X )  - 
1 ) ) )  =  if ( X  <_  ( 1  / 
2 ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )
37 ifid 3917 . . . . 5  |-  if ( X  <_  ( 1  /  2 ) ,  ( G `  (
( 2  x.  X
)  -  1 ) ) ,  ( G `
 ( ( 2  x.  X )  - 
1 ) ) )  =  ( G `  ( ( 2  x.  X )  -  1 ) )
3836, 37syl6eq 2500 . . . 4  |-  ( (
ph  /\  ( X  e.  ( ( 1  / 
2 ) [,] 1
)  /\  X  <_  ( 1  /  2 ) ) )  ->  if ( X  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  X ) ) ,  ( G `
 ( ( 2  x.  X )  - 
1 ) ) )  =  ( G `  ( ( 2  x.  X )  -  1 ) ) )
3938expr 619 . . 3  |-  ( (
ph  /\  X  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  ( X  <_  ( 1  / 
2 )  ->  if ( X  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  X ) ) ,  ( G `
 ( ( 2  x.  X )  - 
1 ) ) )  =  ( G `  ( ( 2  x.  X )  -  1 ) ) ) )
40 iffalse 3889 . . 3  |-  ( -.  X  <_  ( 1  /  2 )  ->  if ( X  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  X
) ) ,  ( G `  ( ( 2  x.  X )  -  1 ) ) )  =  ( G `
 ( ( 2  x.  X )  - 
1 ) ) )
4139, 40pm2.61d1 163 . 2  |-  ( (
ph  /\  X  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  if ( X  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  X ) ) ,  ( G `
 ( ( 2  x.  X )  - 
1 ) ) )  =  ( G `  ( ( 2  x.  X )  -  1 ) ) )
4213, 41eqtrd 2484 1  |-  ( (
ph  /\  X  e.  ( ( 1  / 
2 ) [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  X )  =  ( G `  ( ( 2  x.  X )  -  1 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886    C_ wss 3403   ifcif 3880   class class class wbr 4401   ` cfv 5581  (class class class)co 6288   RRcr 9535   0cc0 9536   1c1 9537    x. cmul 9541    <_ cle 9673    - cmin 9857    / cdiv 10266   2c2 10656   [,]cicc 11635    Cn ccn 20233   IIcii 21900   *pcpco 22024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-po 4754  df-so 4755  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-1st 6790  df-2nd 6791  df-er 7360  df-map 7471  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-2 10665  df-icc 11639  df-top 19914  df-topon 19916  df-cn 20236  df-pco 22029
This theorem is referenced by:  pcoass  22048  pcorevlem  22050
  Copyright terms: Public domain W3C validator