MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcorevlem Structured version   Unicode version

Theorem pcorevlem 20557
Description: Lemma for pcorev 20558. Prove continuity of the homotopy function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.)
Hypotheses
Ref Expression
pcorev.1  |-  G  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
pcorev.2  |-  P  =  ( ( 0 [,] 1 )  X.  {
( F `  1
) } )
pcorevlem.3  |-  H  =  ( s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) ) )
Assertion
Ref Expression
pcorevlem  |-  ( F  e.  ( II  Cn  J )  ->  ( H  e.  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  /\  ( G ( *p `  J ) F ) (  ~=ph  `  J ) P ) )
Distinct variable groups:    t, s, x, F    G, s, t    J, s, t, x    P, s, t, x
Allowed substitution hints:    G( x)    H( x, t, s)

Proof of Theorem pcorevlem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pcorev.1 . . . . 5  |-  G  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
2 iitopon 20414 . . . . . . 7  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
32a1i 11 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
4 iirevcn 20461 . . . . . . 7  |-  ( x  e.  ( 0 [,] 1 )  |->  ( 1  -  x ) )  e.  ( II  Cn  II )
54a1i 11 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( 1  -  x ) )  e.  ( II 
Cn  II ) )
6 id 22 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  F  e.  ( II  Cn  J
) )
73, 5, 6cnmpt11f 19196 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( F `  ( 1  -  x ) ) )  e.  ( II 
Cn  J ) )
81, 7syl5eqel 2525 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  G  e.  ( II  Cn  J
) )
9 1elunit 11400 . . . . 5  |-  1  e.  ( 0 [,] 1
)
10 oveq2 6098 . . . . . . . 8  |-  ( x  =  1  ->  (
1  -  x )  =  ( 1  -  1 ) )
11 1m1e0 10386 . . . . . . . 8  |-  ( 1  -  1 )  =  0
1210, 11syl6eq 2489 . . . . . . 7  |-  ( x  =  1  ->  (
1  -  x )  =  0 )
1312fveq2d 5692 . . . . . 6  |-  ( x  =  1  ->  ( F `  ( 1  -  x ) )  =  ( F `  0
) )
14 fvex 5698 . . . . . 6  |-  ( F `
 0 )  e. 
_V
1513, 1, 14fvmpt 5771 . . . . 5  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( G `  1 )  =  ( F ` 
0 ) )
169, 15mp1i 12 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( G `  1 )  =  ( F ` 
0 ) )
178, 6, 16pcocn 20548 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  ( G ( *p `  J ) F )  e.  ( II  Cn  J ) )
18 cntop2 18804 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
19 eqid 2441 . . . . . . 7  |-  U. J  =  U. J
2019toptopon 18497 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2118, 20sylib 196 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  (TopOn `  U. J ) )
22 iiuni 20416 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
2322, 19cnf 18809 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
24 ffvelrn 5838 . . . . . 6  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  1  e.  ( 0 [,] 1
) )  ->  ( F `  1 )  e.  U. J )
2523, 9, 24sylancl 657 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  ( F `  1 )  e.  U. J )
26 pcorev.2 . . . . . 6  |-  P  =  ( ( 0 [,] 1 )  X.  {
( F `  1
) } )
2726pcoptcl 20552 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  ( F `  1 )  e.  U. J )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  ( F `  1 )  /\  ( P ` 
1 )  =  ( F `  1 ) ) )
2821, 25, 27syl2anc 656 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( P  e.  ( II  Cn  J )  /\  ( P `  0 )  =  ( F ` 
1 )  /\  ( P `  1 )  =  ( F ` 
1 ) ) )
2928simp1d 995 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  P  e.  ( II  Cn  J
) )
30 pcorevlem.3 . . . 4  |-  H  =  ( s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) ) )
31 eqid 2441 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
32 eqid 2441 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
33 eqid 2441 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
34 dfii2 20417 . . . . . 6  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
35 0red 9383 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  0  e.  RR )
36 1red 9397 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  1  e.  RR )
37 halfre 10536 . . . . . . . 8  |-  ( 1  /  2 )  e.  RR
38 0re 9382 . . . . . . . . 9  |-  0  e.  RR
39 halfgt0 10538 . . . . . . . . 9  |-  0  <  ( 1  /  2
)
4038, 37, 39ltleii 9493 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
41 1re 9381 . . . . . . . . 9  |-  1  e.  RR
42 halflt1 10539 . . . . . . . . 9  |-  ( 1  /  2 )  <  1
4337, 41, 42ltleii 9493 . . . . . . . 8  |-  ( 1  /  2 )  <_ 
1
4438, 41elicc2i 11357 . . . . . . . 8  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
4537, 40, 43, 44mpbir3an 1165 . . . . . . 7  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
4645a1i 11 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
1  /  2 )  e.  ( 0 [,] 1 ) )
47 simprl 750 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  s  =  ( 1  / 
2 ) )
4847oveq2d 6106 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
2  x.  s )  =  ( 2  x.  ( 1  /  2
) ) )
49 2cn 10388 . . . . . . . . . . 11  |-  2  e.  CC
50 2ne0 10410 . . . . . . . . . . 11  |-  2  =/=  0
5149, 50recidi 10058 . . . . . . . . . 10  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
5248, 51syl6eq 2489 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
2  x.  s )  =  1 )
5352oveq1d 6105 . . . . . . . . . . . 12  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( 2  x.  s
)  -  1 )  =  ( 1  -  1 ) )
5453, 11syl6eq 2489 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( 2  x.  s
)  -  1 )  =  0 )
5554oveq2d 6106 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  0 ) )
56 1m0e1 10428 . . . . . . . . . 10  |-  ( 1  -  0 )  =  1
5755, 56syl6eq 2489 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  ( ( 2  x.  s )  -  1 ) )  =  1 )
5852, 57eqtr4d 2476 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
2  x.  s )  =  ( 1  -  ( ( 2  x.  s )  -  1 ) ) )
5958oveq2d 6106 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( 1  -  t
)  x.  ( 2  x.  s ) )  =  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) ) )
6059oveq2d 6106 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) )  =  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )
61 retopon 20301 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
62 iccssre 11373 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
6338, 37, 62mp2an 667 . . . . . . . . 9  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
64 resttopon 18724 . . . . . . . . 9  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6561, 63, 64mp2an 667 . . . . . . . 8  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
6665a1i 11 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6766, 3cnmpt2nd 19201 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
68 oveq2 6098 . . . . . . . . 9  |-  ( x  =  t  ->  (
1  -  x )  =  ( 1  -  t ) )
6966, 3, 67, 3, 5, 68cnmpt21 19203 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  t ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
7066, 3cnmpt1st 19200 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  s )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) ) ) )
7132iihalf1cn 20463 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  x ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
7271a1i 11 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] ( 1  / 
2 ) )  |->  ( 2  x.  x ) )  e.  ( ( ( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II ) )
73 oveq2 6098 . . . . . . . . 9  |-  ( x  =  s  ->  (
2  x.  x )  =  ( 2  x.  s ) )
7466, 3, 70, 66, 72, 73cnmpt21 19203 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( 2  x.  s ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
75 iimulcn 20469 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x  x.  y ) )  e.  ( ( II 
tX  II )  Cn  II )
7675a1i 11 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x  x.  y ) )  e.  ( ( II  tX  II )  Cn  II ) )
77 oveq12 6099 . . . . . . . 8  |-  ( ( x  =  ( 1  -  t )  /\  y  =  ( 2  x.  s ) )  ->  ( x  x.  y )  =  ( ( 1  -  t
)  x.  ( 2  x.  s ) ) )
7866, 3, 69, 74, 3, 3, 76, 77cnmpt22 19206 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( 1  -  t
)  x.  ( 2  x.  s ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
79 oveq2 6098 . . . . . . 7  |-  ( x  =  ( ( 1  -  t )  x.  ( 2  x.  s
) )  ->  (
1  -  x )  =  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) )
8066, 3, 78, 3, 5, 79cnmpt21 19203 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
81 iccssre 11373 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
8237, 41, 81mp2an 667 . . . . . . . . 9  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
83 resttopon 18724 . . . . . . . . 9  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
8461, 82, 83mp2an 667 . . . . . . . 8  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
8584a1i 11 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
8685, 3cnmpt2nd 19201 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
8785, 3, 86, 3, 5, 68cnmpt21 19203 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  t ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
8885, 3cnmpt1st 19200 . . . . . . . . . 10  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  s )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) ) ) )
8933iihalf2cn 20465 . . . . . . . . . . 11  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
9089a1i 11 . . . . . . . . . 10  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x
)  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II ) )
9173oveq1d 6105 . . . . . . . . . 10  |-  ( x  =  s  ->  (
( 2  x.  x
)  -  1 )  =  ( ( 2  x.  s )  - 
1 ) )
9285, 3, 88, 85, 90, 91cnmpt21 19203 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( 2  x.  s
)  -  1 ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
93 oveq2 6098 . . . . . . . . 9  |-  ( x  =  ( ( 2  x.  s )  - 
1 )  ->  (
1  -  x )  =  ( 1  -  ( ( 2  x.  s )  -  1 ) ) )
9485, 3, 92, 3, 5, 93cnmpt21 19203 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  ( ( 2  x.  s )  -  1 ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
95 oveq12 6099 . . . . . . . 8  |-  ( ( x  =  ( 1  -  t )  /\  y  =  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) )  ->  ( x  x.  y )  =  ( ( 1  -  t
)  x.  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) ) )
9685, 3, 87, 94, 3, 3, 76, 95cnmpt22 19206 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( 1  -  t
)  x.  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
97 oveq2 6098 . . . . . . 7  |-  ( x  =  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  ->  (
1  -  x )  =  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )
9885, 3, 96, 3, 5, 97cnmpt21 19203 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
9931, 32, 33, 34, 35, 36, 46, 3, 60, 80, 98cnmpt2pc 20459 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  e.  ( ( II  tX  II )  Cn  II ) )
1003, 3, 99, 6cnmpt21f 19204 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( F `  if ( s  <_  ( 1  /  2 ) ,  ( 1  -  (
( 1  -  t
)  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) ) ) ) ) )  e.  ( ( II  tX  II )  Cn  J ) )
10130, 100syl5eqel 2525 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  H  e.  ( ( II  tX  II )  Cn  J
) )
102 simpr 458 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  y  e.  ( 0 [,] 1 ) )
103 0elunit 11399 . . . . 5  |-  0  e.  ( 0 [,] 1
)
104 simpl 454 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  0 )  ->  s  =  y )
105104breq1d 4299 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( s  <_ 
( 1  /  2
)  <->  y  <_  (
1  /  2 ) ) )
106 simpr 458 . . . . . . . . . . . 12  |-  ( ( s  =  y  /\  t  =  0 )  ->  t  =  0 )
107106oveq2d 6106 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  t )  =  ( 1  -  0 ) )
108107, 56syl6eq 2489 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  t )  =  1 )
109104oveq2d 6106 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 2  x.  s )  =  ( 2  x.  y ) )
110108, 109oveq12d 6108 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( ( 1  -  t )  x.  ( 2  x.  s
) )  =  ( 1  x.  ( 2  x.  y ) ) )
111110oveq2d 6106 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) )  =  ( 1  -  ( 1  x.  ( 2  x.  y ) ) ) )
112109oveq1d 6105 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( ( 2  x.  s )  - 
1 )  =  ( ( 2  x.  y
)  -  1 ) )
113112oveq2d 6106 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  ( ( 2  x.  y )  -  1 ) ) )
114108, 113oveq12d 6108 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  =  ( 1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) )
115114oveq2d 6106 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) )  =  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
116105, 111, 115ifbieq12d 3813 . . . . . . 7  |-  ( ( s  =  y  /\  t  =  0 )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  if ( y  <_ 
( 1  /  2
) ,  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) ,  ( 1  -  (
1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) ) ) )
117116fveq2d 5692 . . . . . 6  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
118 fvex 5698 . . . . . 6  |-  ( F `
 if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  e.  _V
119117, 30, 118ovmpt2a 6220 . . . . 5  |-  ( ( y  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( y H 0 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
120102, 103, 119sylancl 657 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 0 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
121 iftrue 3794 . . . . . . . 8  |-  ( y  <_  ( 1  / 
2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) )
122121adantl 463 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) )
123122fveq2d 5692 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( F `
 ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ) )
124 elii1 20466 . . . . . . . 8  |-  ( y  e.  ( 0 [,] ( 1  /  2
) )  <->  ( y  e.  ( 0 [,] 1
)  /\  y  <_  ( 1  /  2 ) ) )
1258, 6pcoval1 20544 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( G `  ( 2  x.  y ) ) )
126 iihalf1 20462 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  y )  e.  ( 0 [,] 1 ) )
127126adantl 463 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( 2  x.  y )  e.  ( 0 [,] 1 ) )
128 oveq2 6098 . . . . . . . . . . . . 13  |-  ( x  =  ( 2  x.  y )  ->  (
1  -  x )  =  ( 1  -  ( 2  x.  y
) ) )
129128fveq2d 5692 . . . . . . . . . . . 12  |-  ( x  =  ( 2  x.  y )  ->  ( F `  ( 1  -  x ) )  =  ( F `  (
1  -  ( 2  x.  y ) ) ) )
130 fvex 5698 . . . . . . . . . . . 12  |-  ( F `
 ( 1  -  ( 2  x.  y
) ) )  e. 
_V
131129, 1, 130fvmpt 5771 . . . . . . . . . . 11  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  ( G `  ( 2  x.  y ) )  =  ( F `  (
1  -  ( 2  x.  y ) ) ) )
132 unitssre 11428 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  C_  RR
133132sseli 3349 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
2  x.  y )  e.  RR )
134133recnd 9408 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
2  x.  y )  e.  CC )
135134mulid2d 9400 . . . . . . . . . . . . 13  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
1  x.  ( 2  x.  y ) )  =  ( 2  x.  y ) )
136135oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  x.  ( 2  x.  y ) ) )  =  ( 1  -  ( 2  x.  y
) ) )
137136fveq2d 5692 . . . . . . . . . . 11  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  ( F `  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) )  =  ( F `  ( 1  -  (
2  x.  y ) ) ) )
138131, 137eqtr4d 2476 . . . . . . . . . 10  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  ( G `  ( 2  x.  y ) )  =  ( F `  (
1  -  ( 1  x.  ( 2  x.  y ) ) ) ) )
139127, 138syl 16 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( G `  ( 2  x.  y
) )  =  ( F `  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) ) )
140125, 139eqtrd 2473 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( F `  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) ) )
141124, 140sylan2br 473 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( y  e.  ( 0 [,] 1 )  /\  y  <_  (
1  /  2 ) ) )  ->  (
( G ( *p
`  J ) F ) `  y )  =  ( F `  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ) )
142141anassrs 643 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  (
( G ( *p
`  J ) F ) `  y )  =  ( F `  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ) )
143123, 142eqtr4d 2476 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( ( G ( *p `  J ) F ) `
 y ) )
144 iffalse 3796 . . . . . . . 8  |-  ( -.  y  <_  ( 1  /  2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) )
145144adantl 463 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) )
146145fveq2d 5692 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( F `
 ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )
147 elii2 20467 . . . . . . . 8  |-  ( ( y  e.  ( 0 [,] 1 )  /\  -.  y  <_  ( 1  /  2 ) )  ->  y  e.  ( ( 1  /  2
) [,] 1 ) )
1488, 6, 16pcoval2 20547 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( F `  ( ( 2  x.  y )  -  1 ) ) )
149 iihalf2 20464 . . . . . . . . . . . 12  |-  ( y  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 ) )
150149adantl 463 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( 2  x.  y )  - 
1 )  e.  ( 0 [,] 1 ) )
151 ax-1cn 9336 . . . . . . . . . . . . . . 15  |-  1  e.  CC
152132sseli 3349 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  e.  RR )
153152recnd 9408 . . . . . . . . . . . . . . 15  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  e.  CC )
154 subcl 9605 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( ( 2  x.  y )  -  1 )  e.  CC )  ->  ( 1  -  ( ( 2  x.  y )  -  1 ) )  e.  CC )
155151, 153, 154sylancr 658 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  -  ( ( 2  x.  y )  -  1 ) )  e.  CC )
156155mulid2d 9400 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) )  =  ( 1  -  ( ( 2  x.  y )  -  1 ) ) )
157156oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) )  =  ( 1  -  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) )
158 nncan 9634 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( ( 2  x.  y )  -  1 )  e.  CC )  ->  ( 1  -  ( 1  -  (
( 2  x.  y
)  -  1 ) ) )  =  ( ( 2  x.  y
)  -  1 ) )
159151, 153, 158sylancr 658 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) )  =  ( ( 2  x.  y )  - 
1 ) )
160157, 159eqtr2d 2474 . . . . . . . . . . 11  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  =  ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
161150, 160syl 16 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( 2  x.  y )  - 
1 )  =  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
162161fveq2d 5692 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( F `  ( ( 2  x.  y )  -  1 ) )  =  ( F `  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )
163148, 162eqtrd 2473 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( F `  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )
164147, 163sylan2 471 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( y  e.  ( 0 [,] 1 )  /\  -.  y  <_ 
( 1  /  2
) ) )  -> 
( ( G ( *p `  J ) F ) `  y
)  =  ( F `
 ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )
165164anassrs 643 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  (
( G ( *p
`  J ) F ) `  y )  =  ( F `  ( 1  -  (
1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) ) ) )
166146, 165eqtr4d 2476 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( ( G ( *p `  J ) F ) `
 y ) )
167143, 166pm2.61dan 784 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( F `  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  =  ( ( G ( *p
`  J ) F ) `  y ) )
168120, 167eqtrd 2473 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 0 )  =  ( ( G ( *p
`  J ) F ) `  y ) )
169132sseli 3349 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0 [,] 1 )  ->  y  e.  RR )
170169recnd 9408 . . . . . . . . . . . 12  |-  ( y  e.  ( 0 [,] 1 )  ->  y  e.  CC )
171 mulcl 9362 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  y  e.  CC )  ->  ( 2  x.  y
)  e.  CC )
17249, 170, 171sylancr 658 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,] 1 )  ->  (
2  x.  y )  e.  CC )
173172adantl 463 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 2  x.  y )  e.  CC )
174173mul02d 9563 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0  x.  ( 2  x.  y
) )  =  0 )
175174oveq2d 6106 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
2  x.  y ) ) )  =  ( 1  -  0 ) )
176175, 56syl6eq 2489 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
2  x.  y ) ) )  =  1 )
177 subcl 9605 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  e.  CC  /\  1  e.  CC )  ->  ( ( 2  x.  y )  -  1 )  e.  CC )
178173, 151, 177sylancl 657 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( ( 2  x.  y )  - 
1 )  e.  CC )
179151, 178, 154sylancr 658 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( ( 2  x.  y )  -  1 ) )  e.  CC )
180179mul02d 9563 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) )  =  0 )
181180oveq2d 6106 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) )  =  ( 1  -  0 ) )
182181, 56syl6eq 2489 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) )  =  1 )
183176, 182ifeq12d 3806 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  if ( y  <_ 
( 1  /  2
) ,  1 ,  1 ) )
184 ifid 3823 . . . . . 6  |-  if ( y  <_  ( 1  /  2 ) ,  1 ,  1 )  =  1
185183, 184syl6eq 2489 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  1 )
186185fveq2d 5692 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( F `  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 0  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  =  ( F `  1 ) )
187 simpl 454 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  1 )  ->  s  =  y )
188187breq1d 4299 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( s  <_ 
( 1  /  2
)  <->  y  <_  (
1  /  2 ) ) )
189 simpr 458 . . . . . . . . . . . 12  |-  ( ( s  =  y  /\  t  =  1 )  ->  t  =  1 )
190189oveq2d 6106 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  t )  =  ( 1  -  1 ) )
191190, 11syl6eq 2489 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  t )  =  0 )
192187oveq2d 6106 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 2  x.  s )  =  ( 2  x.  y ) )
193191, 192oveq12d 6108 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( ( 1  -  t )  x.  ( 2  x.  s
) )  =  ( 0  x.  ( 2  x.  y ) ) )
194193oveq2d 6106 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) )  =  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) )
195192oveq1d 6105 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( ( 2  x.  s )  - 
1 )  =  ( ( 2  x.  y
)  -  1 ) )
196195oveq2d 6106 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  ( ( 2  x.  y )  -  1 ) ) )
197191, 196oveq12d 6108 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  =  ( 0  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) )
198197oveq2d 6106 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) )  =  ( 1  -  ( 0  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
199188, 194, 198ifbieq12d 3813 . . . . . . 7  |-  ( ( s  =  y  /\  t  =  1 )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  if ( y  <_ 
( 1  /  2
) ,  ( 1  -  ( 0  x.  ( 2  x.  y
) ) ) ,  ( 1  -  (
0  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) ) ) )
200199fveq2d 5692 . . . . . 6  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
201 fvex 5698 . . . . . 6  |-  ( F `
 if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  e.  _V
202200, 30, 201ovmpt2a 6220 . . . . 5  |-  ( ( y  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( y H 1 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
203102, 9, 202sylancl 657 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 1 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
20426fveq1i 5689 . . . . 5  |-  ( P `
 y )  =  ( ( ( 0 [,] 1 )  X. 
{ ( F ` 
1 ) } ) `
 y )
205 fvex 5698 . . . . . . 7  |-  ( F `
 1 )  e. 
_V
206205fvconst2 5930 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( F `  1
) } ) `  y )  =  ( F `  1 ) )
207206adantl 463 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { ( F `
 1 ) } ) `  y )  =  ( F ` 
1 ) )
208204, 207syl5eq 2485 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( P `  y )  =  ( F `  1 ) )
209186, 203, 2083eqtr4d 2483 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 1 )  =  ( P `  y ) )
210 simpl 454 . . . . . . . . . . 11  |-  ( ( s  =  0  /\  t  =  y )  ->  s  =  0 )
211210, 40syl6eqbr 4326 . . . . . . . . . 10  |-  ( ( s  =  0  /\  t  =  y )  ->  s  <_  (
1  /  2 ) )
212 iftrue 3794 . . . . . . . . . 10  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s
) ) ) )
213211, 212syl 16 . . . . . . . . 9  |-  ( ( s  =  0  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  t
)  x.  ( 2  x.  s ) ) ) )
214 simpr 458 . . . . . . . . . . . 12  |-  ( ( s  =  0  /\  t  =  y )  ->  t  =  y )
215214oveq2d 6106 . . . . . . . . . . 11  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 1  -  t )  =  ( 1  -  y ) )
216210oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 2  x.  s )  =  ( 2  x.  0 ) )
217 2t0e0 10473 . . . . . . . . . . . 12  |-  ( 2  x.  0 )  =  0
218216, 217syl6eq 2489 . . . . . . . . . . 11  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 2  x.  s )  =  0 )
219215, 218oveq12d 6108 . . . . . . . . . 10  |-  ( ( s  =  0  /\  t  =  y )  ->  ( ( 1  -  t )  x.  ( 2  x.  s
) )  =  ( ( 1  -  y
)  x.  0 ) )
220219oveq2d 6106 . . . . . . . . 9  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) )  =  ( 1  -  ( ( 1  -  y )  x.  0 ) ) )
221213, 220eqtrd 2473 . . . . . . . 8  |-  ( ( s  =  0  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  y
)  x.  0 ) ) )
222221fveq2d 5692 . . . . . . 7  |-  ( ( s  =  0  /\  t  =  y )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
223 fvex 5698 . . . . . . 7  |-  ( F `
 ( 1  -  ( ( 1  -  y )  x.  0 ) ) )  e. 
_V
224222, 30, 223ovmpt2a 6220 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0 H y )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
225103, 224mpan 665 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  (
0 H y )  =  ( F `  ( 1  -  (
( 1  -  y
)  x.  0 ) ) ) )
226 subcl 9605 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  y  e.  CC )  ->  ( 1  -  y
)  e.  CC )
227151, 170, 226sylancr 658 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  y )  e.  CC )
228227mul01d 9564 . . . . . . . 8  |-  ( y  e.  ( 0 [,] 1 )  ->  (
( 1  -  y
)  x.  0 )  =  0 )
229228oveq2d 6106 . . . . . . 7  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  ( ( 1  -  y )  x.  0 ) )  =  ( 1  -  0 ) )
230229, 56syl6eq 2489 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  ( ( 1  -  y )  x.  0 ) )  =  1 )
231230fveq2d 5692 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) )  =  ( F ` 
1 ) )
232225, 231eqtrd 2473 . . . 4  |-  ( y  e.  ( 0 [,] 1 )  ->  (
0 H y )  =  ( F ` 
1 ) )
2338, 6pco0 20545 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
( G ( *p
`  J ) F ) `  0 )  =  ( G ` 
0 ) )
234 oveq2 6098 . . . . . . . . 9  |-  ( x  =  0  ->  (
1  -  x )  =  ( 1  -  0 ) )
235234, 56syl6eq 2489 . . . . . . . 8  |-  ( x  =  0  ->  (
1  -  x )  =  1 )
236235fveq2d 5692 . . . . . . 7  |-  ( x  =  0  ->  ( F `  ( 1  -  x ) )  =  ( F `  1
) )
237236, 1, 205fvmpt 5771 . . . . . 6  |-  ( 0  e.  ( 0 [,] 1 )  ->  ( G `  0 )  =  ( F ` 
1 ) )
238103, 237ax-mp 5 . . . . 5  |-  ( G `
 0 )  =  ( F `  1
)
239233, 238syl6req 2490 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( F `  1 )  =  ( ( G ( *p `  J
) F ) ` 
0 ) )
240232, 239sylan9eqr 2495 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0 H y )  =  ( ( G ( *p
`  J ) F ) `  0 ) )
24137, 41ltnlei 9491 . . . . . . . . . . . 12  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
24242, 241mpbi 208 . . . . . . . . . . 11  |-  -.  1  <_  ( 1  /  2
)
243 simpl 454 . . . . . . . . . . . 12  |-  ( ( s  =  1  /\  t  =  y )  ->  s  =  1 )
244243breq1d 4299 . . . . . . . . . . 11  |-  ( ( s  =  1  /\  t  =  y )  ->  ( s  <_ 
( 1  /  2
)  <->  1  <_  (
1  /  2 ) ) )
245242, 244mtbiri 303 . . . . . . . . . 10  |-  ( ( s  =  1  /\  t  =  y )  ->  -.  s  <_  ( 1  /  2 ) )
246 iffalse 3796 . . . . . . . . . 10  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) ) ) )
247245, 246syl 16 . . . . . . . . 9  |-  ( ( s  =  1  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  t
)  x.  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) ) ) )
248 simpr 458 . . . . . . . . . . . 12  |-  ( ( s  =  1  /\  t  =  y )  ->  t  =  y )
249248oveq2d 6106 . . . . . . . . . . 11  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  t )  =  ( 1  -  y ) )
250243oveq2d 6106 . . . . . . . . . . . . . . . 16  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 2  x.  s )  =  ( 2  x.  1 ) )
251 2t1e2 10466 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  1 )  =  2
252250, 251syl6eq 2489 . . . . . . . . . . . . . . 15  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 2  x.  s )  =  2 )
253252oveq1d 6105 . . . . . . . . . . . . . 14  |-  ( ( s  =  1  /\  t  =  y )  ->  ( ( 2  x.  s )  - 
1 )  =  ( 2  -  1 ) )
254 2m1e1 10432 . . . . . . . . . . . . . 14  |-  ( 2  -  1 )  =  1
255253, 254syl6eq 2489 . . . . . . . . . . . . 13  |-  ( ( s  =  1  /\  t  =  y )  ->  ( ( 2  x.  s )  - 
1 )  =  1 )
256255oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  1 ) )
257256, 11syl6eq 2489 . . . . . . . . . . 11  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  0 )
258249, 257oveq12d 6108 . . . . . . . . . 10  |-  ( ( s  =  1  /\  t  =  y )  ->  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  =  ( ( 1  -  y
)  x.  0 ) )
259258oveq2d 6106 . . . . . . . . 9  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) )  =  ( 1  -  ( ( 1  -  y )  x.  0 ) ) )
260247, 259eqtrd 2473 . . . . . . . 8  |-  ( ( s  =  1  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  y
)  x.  0 ) ) )
261260fveq2d 5692 . . . . . . 7  |-  ( ( s  =  1  /\  t  =  y )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
262261, 30, 223ovmpt2a 6220 . . . . . 6  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1 H y )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
2639, 262mpan 665 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1 H y )  =  ( F `  ( 1  -  (
( 1  -  y
)  x.  0 ) ) ) )
264263, 231eqtrd 2473 . . . 4  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1 H y )  =  ( F ` 
1 ) )
2658, 6pco1 20546 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
( G ( *p
`  J ) F ) `  1 )  =  ( F ` 
1 ) )
266265eqcomd 2446 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( F `  1 )  =  ( ( G ( *p `  J
) F ) ` 
1 ) )
267264, 266sylan9eqr 2495 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1 H y )  =  ( ( G ( *p
`  J ) F ) `  1 ) )
26817, 29, 101, 168, 209, 240, 267isphtpy2d 20518 . 2  |-  ( F  e.  ( II  Cn  J )  ->  H  e.  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P ) )
269 ne0i 3640 . . . 4  |-  ( H  e.  ( ( G ( *p `  J
) F ) (
PHtpy `  J ) P )  ->  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  =/=  (/) )
270268, 269syl 16 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  (
( G ( *p
`  J ) F ) ( PHtpy `  J
) P )  =/=  (/) )
271 isphtpc 20525 . . 3  |-  ( ( G ( *p `  J ) F ) (  ~=ph  `  J ) P  <->  ( ( G ( *p `  J
) F )  e.  ( II  Cn  J
)  /\  P  e.  ( II  Cn  J
)  /\  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  =/=  (/) ) )
27217, 29, 270, 271syl3anbrc 1167 . 2  |-  ( F  e.  ( II  Cn  J )  ->  ( G ( *p `  J ) F ) (  ~=ph  `  J ) P )
273268, 272jca 529 1  |-  ( F  e.  ( II  Cn  J )  ->  ( H  e.  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  /\  ( G ( *p `  J ) F ) (  ~=ph  `  J ) P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604    C_ wss 3325   (/)c0 3634   ifcif 3788   {csn 3874   U.cuni 4088   class class class wbr 4289    e. cmpt 4347    X. cxp 4834   ran crn 4837   -->wf 5411   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    x. cmul 9283    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   2c2 10367   (,)cioo 11296   [,]cicc 11299   ↾t crest 14355   topGenctg 14372   Topctop 18457  TopOnctopon 18458    Cn ccn 18787    tX ctx 19092   IIcii 20410   PHtpycphtpy 20499    ~=ph cphtpc 20500   *pcpco 20531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-inf2 7843  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356  ax-mulf 9358
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-se 4676  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-isom 5424  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-fsupp 7617  df-fi 7657  df-sup 7687  df-oi 7720  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-q 10950  df-rp 10988  df-xneg 11085  df-xadd 11086  df-xmul 11087  df-ioo 11300  df-icc 11303  df-fz 11434  df-fzo 11545  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-starv 14249  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-unif 14257  df-hom 14258  df-cco 14259  df-rest 14357  df-topn 14358  df-0g 14376  df-gsum 14377  df-topgen 14378  df-pt 14379  df-prds 14382  df-xrs 14436  df-qtop 14441  df-imas 14442  df-xps 14444  df-mre 14520  df-mrc 14521  df-acs 14523  df-mnd 15411  df-submnd 15461  df-mulg 15541  df-cntz 15828  df-cmn 16272  df-psmet 17768  df-xmet 17769  df-met 17770  df-bl 17771  df-mopn 17772  df-cnfld 17778  df-top 18462  df-bases 18464  df-topon 18465  df-topsp 18466  df-cld 18582  df-cn 18790  df-cnp 18791  df-tx 19094  df-hmeo 19287  df-xms 19854  df-ms 19855  df-tms 19856  df-ii 20412  df-htpy 20501  df-phtpy 20502  df-phtpc 20523  df-pco 20536
This theorem is referenced by:  pcorev  20558
  Copyright terms: Public domain W3C validator