MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcorevlem Unicode version

Theorem pcorevlem 19004
Description: Lemma for pcorev 19005. Prove continuity of the homotopy function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.)
Hypotheses
Ref Expression
pcorev.1  |-  G  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
pcorev.2  |-  P  =  ( ( 0 [,] 1 )  X.  {
( F `  1
) } )
pcorevlem.3  |-  H  =  ( s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) ) )
Assertion
Ref Expression
pcorevlem  |-  ( F  e.  ( II  Cn  J )  ->  ( H  e.  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  /\  ( G ( *p `  J ) F ) (  ~=ph  `  J ) P ) )
Distinct variable groups:    t, s, x, F    G, s, t    J, s, t, x    P, s, t, x
Allowed substitution hints:    G( x)    H( x, t, s)

Proof of Theorem pcorevlem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 pcorev.1 . . . . 5  |-  G  =  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  (
1  -  x ) ) )
2 iitopon 18862 . . . . . . 7  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
32a1i 11 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
4 iirevcn 18908 . . . . . . 7  |-  ( x  e.  ( 0 [,] 1 )  |->  ( 1  -  x ) )  e.  ( II  Cn  II )
54a1i 11 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( 1  -  x ) )  e.  ( II 
Cn  II ) )
6 id 20 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  F  e.  ( II  Cn  J
) )
73, 5, 6cnmpt11f 17649 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( F `  ( 1  -  x ) ) )  e.  ( II 
Cn  J ) )
81, 7syl5eqel 2488 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  G  e.  ( II  Cn  J
) )
9 1elunit 10972 . . . . 5  |-  1  e.  ( 0 [,] 1
)
10 oveq2 6048 . . . . . . . 8  |-  ( x  =  1  ->  (
1  -  x )  =  ( 1  -  1 ) )
11 1m1e0 10024 . . . . . . . 8  |-  ( 1  -  1 )  =  0
1210, 11syl6eq 2452 . . . . . . 7  |-  ( x  =  1  ->  (
1  -  x )  =  0 )
1312fveq2d 5691 . . . . . 6  |-  ( x  =  1  ->  ( F `  ( 1  -  x ) )  =  ( F `  0
) )
14 fvex 5701 . . . . . 6  |-  ( F `
 0 )  e. 
_V
1513, 1, 14fvmpt 5765 . . . . 5  |-  ( 1  e.  ( 0 [,] 1 )  ->  ( G `  1 )  =  ( F ` 
0 ) )
169, 15mp1i 12 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( G `  1 )  =  ( F ` 
0 ) )
178, 6, 16pcocn 18995 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  ( G ( *p `  J ) F )  e.  ( II  Cn  J ) )
18 cntop2 17259 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
19 eqid 2404 . . . . . . 7  |-  U. J  =  U. J
2019toptopon 16953 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2118, 20sylib 189 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  (TopOn `  U. J ) )
22 iiuni 18864 . . . . . . 7  |-  ( 0 [,] 1 )  = 
U. II
2322, 19cnf 17264 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
24 ffvelrn 5827 . . . . . 6  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  1  e.  ( 0 [,] 1
) )  ->  ( F `  1 )  e.  U. J )
2523, 9, 24sylancl 644 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  ( F `  1 )  e.  U. J )
26 pcorev.2 . . . . . 6  |-  P  =  ( ( 0 [,] 1 )  X.  {
( F `  1
) } )
2726pcoptcl 18999 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  ( F `  1 )  e.  U. J )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  ( F `  1 )  /\  ( P ` 
1 )  =  ( F `  1 ) ) )
2821, 25, 27syl2anc 643 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( P  e.  ( II  Cn  J )  /\  ( P `  0 )  =  ( F ` 
1 )  /\  ( P `  1 )  =  ( F ` 
1 ) ) )
2928simp1d 969 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  P  e.  ( II  Cn  J
) )
30 pcorevlem.3 . . . 4  |-  H  =  ( s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 ) 
|->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) ) )
31 eqid 2404 . . . . . 6  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
32 eqid 2404 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
33 eqid 2404 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
34 dfii2 18865 . . . . . 6  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
35 0re 9047 . . . . . . 7  |-  0  e.  RR
3635a1i 11 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  0  e.  RR )
37 1re 9046 . . . . . . 7  |-  1  e.  RR
3837a1i 11 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  1  e.  RR )
3937rehalfcli 10172 . . . . . . . 8  |-  ( 1  /  2 )  e.  RR
40 halfgt0 10144 . . . . . . . . 9  |-  0  <  ( 1  /  2
)
4135, 39, 40ltleii 9152 . . . . . . . 8  |-  0  <_  ( 1  /  2
)
42 halflt1 10145 . . . . . . . . 9  |-  ( 1  /  2 )  <  1
4339, 37, 42ltleii 9152 . . . . . . . 8  |-  ( 1  /  2 )  <_ 
1
4435, 37elicc2i 10932 . . . . . . . 8  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
4539, 41, 43, 44mpbir3an 1136 . . . . . . 7  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
4645a1i 11 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
1  /  2 )  e.  ( 0 [,] 1 ) )
47 simprl 733 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  s  =  ( 1  / 
2 ) )
4847oveq2d 6056 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
2  x.  s )  =  ( 2  x.  ( 1  /  2
) ) )
49 2cn 10026 . . . . . . . . . . 11  |-  2  e.  CC
50 2ne0 10039 . . . . . . . . . . 11  |-  2  =/=  0
5149, 50recidi 9701 . . . . . . . . . 10  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
5248, 51syl6eq 2452 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
2  x.  s )  =  1 )
5352oveq1d 6055 . . . . . . . . . . . 12  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( 2  x.  s
)  -  1 )  =  ( 1  -  1 ) )
5453, 11syl6eq 2452 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( 2  x.  s
)  -  1 )  =  0 )
5554oveq2d 6056 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  0 ) )
56 ax-1cn 9004 . . . . . . . . . . 11  |-  1  e.  CC
5756subid1i 9328 . . . . . . . . . 10  |-  ( 1  -  0 )  =  1
5855, 57syl6eq 2452 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  ( ( 2  x.  s )  -  1 ) )  =  1 )
5952, 58eqtr4d 2439 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
2  x.  s )  =  ( 1  -  ( ( 2  x.  s )  -  1 ) ) )
6059oveq2d 6056 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
( 1  -  t
)  x.  ( 2  x.  s ) )  =  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) ) )
6160oveq2d 6056 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( s  =  ( 1  /  2 )  /\  t  e.  ( 0 [,] 1 ) ) )  ->  (
1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) )  =  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )
62 retopon 18750 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
63 iccssre 10948 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
6435, 39, 63mp2an 654 . . . . . . . . 9  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
65 resttopon 17179 . . . . . . . . 9  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6662, 64, 65mp2an 654 . . . . . . . 8  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
6766a1i 11 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6867, 3cnmpt2nd 17654 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
69 oveq2 6048 . . . . . . . . 9  |-  ( x  =  t  ->  (
1  -  x )  =  ( 1  -  t ) )
7067, 3, 68, 3, 5, 69cnmpt21 17656 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  t ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
7167, 3cnmpt1st 17653 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  s )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) ) ) )
7232iihalf1cn 18910 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  x ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
7372a1i 11 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] ( 1  / 
2 ) )  |->  ( 2  x.  x ) )  e.  ( ( ( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II ) )
74 oveq2 6048 . . . . . . . . 9  |-  ( x  =  s  ->  (
2  x.  x )  =  ( 2  x.  s ) )
7567, 3, 71, 67, 73, 74cnmpt21 17656 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( 2  x.  s ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
76 iimulcn 18916 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x  x.  y ) )  e.  ( ( II 
tX  II )  Cn  II )
7776a1i 11 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x  x.  y ) )  e.  ( ( II  tX  II )  Cn  II ) )
78 oveq12 6049 . . . . . . . 8  |-  ( ( x  =  ( 1  -  t )  /\  y  =  ( 2  x.  s ) )  ->  ( x  x.  y )  =  ( ( 1  -  t
)  x.  ( 2  x.  s ) ) )
7967, 3, 70, 75, 3, 3, 77, 78cnmpt22 17659 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( 1  -  t
)  x.  ( 2  x.  s ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
80 oveq2 6048 . . . . . . 7  |-  ( x  =  ( ( 1  -  t )  x.  ( 2  x.  s
) )  ->  (
1  -  x )  =  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) )
8167, 3, 79, 3, 5, 80cnmpt21 17656 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] ( 1  / 
2 ) ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  tX  II )  Cn  II ) )
82 iccssre 10948 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
8339, 37, 82mp2an 654 . . . . . . . . 9  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
84 resttopon 17179 . . . . . . . . 9  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
8562, 83, 84mp2an 654 . . . . . . . 8  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
8685a1i 11 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
8786, 3cnmpt2nd 17654 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  t )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
8886, 3, 87, 3, 5, 69cnmpt21 17656 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  t ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
8986, 3cnmpt1st 17653 . . . . . . . . . 10  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  s )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) ) ) )
9033iihalf2cn 18912 . . . . . . . . . . 11  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
9190a1i 11 . . . . . . . . . 10  |-  ( F  e.  ( II  Cn  J )  ->  (
x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x
)  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II ) )
9274oveq1d 6055 . . . . . . . . . 10  |-  ( x  =  s  ->  (
( 2  x.  x
)  -  1 )  =  ( ( 2  x.  s )  - 
1 ) )
9386, 3, 89, 86, 91, 92cnmpt21 17656 . . . . . . . . 9  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( 2  x.  s
)  -  1 ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
94 oveq2 6048 . . . . . . . . 9  |-  ( x  =  ( ( 2  x.  s )  - 
1 )  ->  (
1  -  x )  =  ( 1  -  ( ( 2  x.  s )  -  1 ) ) )
9586, 3, 93, 3, 5, 94cnmpt21 17656 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  ( ( 2  x.  s )  -  1 ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
96 oveq12 6049 . . . . . . . 8  |-  ( ( x  =  ( 1  -  t )  /\  y  =  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) )  ->  ( x  x.  y )  =  ( ( 1  -  t
)  x.  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) ) )
9786, 3, 88, 95, 3, 3, 77, 96cnmpt22 17659 . . . . . . 7  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( ( 1  -  t
)  x.  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
98 oveq2 6048 . . . . . . 7  |-  ( x  =  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  ->  (
1  -  x )  =  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )
9986, 3, 97, 3, 5, 98cnmpt21 17656 . . . . . 6  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( ( 1  /  2 ) [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  e.  ( ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  tX  II )  Cn  II ) )
10031, 32, 33, 34, 36, 38, 46, 3, 61, 81, 99cnmpt2pc 18906 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  e.  ( ( II  tX  II )  Cn  II ) )
1013, 3, 100, 6cnmpt21f 17657 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  (
s  e.  ( 0 [,] 1 ) ,  t  e.  ( 0 [,] 1 )  |->  ( F `  if ( s  <_  ( 1  /  2 ) ,  ( 1  -  (
( 1  -  t
)  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) ) ) ) ) )  e.  ( ( II  tX  II )  Cn  J ) )
10230, 101syl5eqel 2488 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  H  e.  ( ( II  tX  II )  Cn  J
) )
103 simpr 448 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  y  e.  ( 0 [,] 1 ) )
104 0elunit 10971 . . . . 5  |-  0  e.  ( 0 [,] 1
)
105 simpl 444 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  0 )  ->  s  =  y )
106105breq1d 4182 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( s  <_ 
( 1  /  2
)  <->  y  <_  (
1  /  2 ) ) )
107 simpr 448 . . . . . . . . . . . 12  |-  ( ( s  =  y  /\  t  =  0 )  ->  t  =  0 )
108107oveq2d 6056 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  t )  =  ( 1  -  0 ) )
109108, 57syl6eq 2452 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  t )  =  1 )
110105oveq2d 6056 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 2  x.  s )  =  ( 2  x.  y ) )
111109, 110oveq12d 6058 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( ( 1  -  t )  x.  ( 2  x.  s
) )  =  ( 1  x.  ( 2  x.  y ) ) )
112111oveq2d 6056 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) )  =  ( 1  -  ( 1  x.  ( 2  x.  y ) ) ) )
113110oveq1d 6055 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( ( 2  x.  s )  - 
1 )  =  ( ( 2  x.  y
)  -  1 ) )
114113oveq2d 6056 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  ( ( 2  x.  y )  -  1 ) ) )
115109, 114oveq12d 6058 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  =  ( 1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) )
116115oveq2d 6056 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) )  =  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
117106, 112, 116ifbieq12d 3721 . . . . . . 7  |-  ( ( s  =  y  /\  t  =  0 )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  if ( y  <_ 
( 1  /  2
) ,  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) ,  ( 1  -  (
1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) ) ) )
118117fveq2d 5691 . . . . . 6  |-  ( ( s  =  y  /\  t  =  0 )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
119 fvex 5701 . . . . . 6  |-  ( F `
 if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  e.  _V
120118, 30, 119ovmpt2a 6163 . . . . 5  |-  ( ( y  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( y H 0 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
121103, 104, 120sylancl 644 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 0 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
122 iftrue 3705 . . . . . . . 8  |-  ( y  <_  ( 1  / 
2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) )
123122adantl 453 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) )
124123fveq2d 5691 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( F `
 ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ) )
125 elii1 18913 . . . . . . . 8  |-  ( y  e.  ( 0 [,] ( 1  /  2
) )  <->  ( y  e.  ( 0 [,] 1
)  /\  y  <_  ( 1  /  2 ) ) )
1268, 6pcoval1 18991 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( G `  ( 2  x.  y ) ) )
127 iihalf1 18909 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  y )  e.  ( 0 [,] 1 ) )
128127adantl 453 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( 2  x.  y )  e.  ( 0 [,] 1 ) )
129 oveq2 6048 . . . . . . . . . . . . 13  |-  ( x  =  ( 2  x.  y )  ->  (
1  -  x )  =  ( 1  -  ( 2  x.  y
) ) )
130129fveq2d 5691 . . . . . . . . . . . 12  |-  ( x  =  ( 2  x.  y )  ->  ( F `  ( 1  -  x ) )  =  ( F `  (
1  -  ( 2  x.  y ) ) ) )
131 fvex 5701 . . . . . . . . . . . 12  |-  ( F `
 ( 1  -  ( 2  x.  y
) ) )  e. 
_V
132130, 1, 131fvmpt 5765 . . . . . . . . . . 11  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  ( G `  ( 2  x.  y ) )  =  ( F `  (
1  -  ( 2  x.  y ) ) ) )
133 unitssre 10998 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  C_  RR
134133sseli 3304 . . . . . . . . . . . . . . 15  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
2  x.  y )  e.  RR )
135134recnd 9070 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
2  x.  y )  e.  CC )
136135mulid2d 9062 . . . . . . . . . . . . 13  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
1  x.  ( 2  x.  y ) )  =  ( 2  x.  y ) )
137136oveq2d 6056 . . . . . . . . . . . 12  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  x.  ( 2  x.  y ) ) )  =  ( 1  -  ( 2  x.  y
) ) )
138137fveq2d 5691 . . . . . . . . . . 11  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  ( F `  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) )  =  ( F `  ( 1  -  (
2  x.  y ) ) ) )
139132, 138eqtr4d 2439 . . . . . . . . . 10  |-  ( ( 2  x.  y )  e.  ( 0 [,] 1 )  ->  ( G `  ( 2  x.  y ) )  =  ( F `  (
1  -  ( 1  x.  ( 2  x.  y ) ) ) ) )
140128, 139syl 16 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( G `  ( 2  x.  y
) )  =  ( F `  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) ) )
141126, 140eqtrd 2436 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] ( 1  / 
2 ) ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( F `  ( 1  -  ( 1  x.  ( 2  x.  y
) ) ) ) )
142125, 141sylan2br 463 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( y  e.  ( 0 [,] 1 )  /\  y  <_  (
1  /  2 ) ) )  ->  (
( G ( *p
`  J ) F ) `  y )  =  ( F `  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ) )
143142anassrs 630 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  (
( G ( *p
`  J ) F ) `  y )  =  ( F `  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ) )
144124, 143eqtr4d 2439 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  y  <_ 
( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( ( G ( *p `  J ) F ) `
 y ) )
145 iffalse 3706 . . . . . . . 8  |-  ( -.  y  <_  ( 1  /  2 )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) )
146145adantl 453 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) )
147146fveq2d 5691 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( F `
 ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )
148 elii2 18914 . . . . . . . 8  |-  ( ( y  e.  ( 0 [,] 1 )  /\  -.  y  <_  ( 1  /  2 ) )  ->  y  e.  ( ( 1  /  2
) [,] 1 ) )
1498, 6, 16pcoval2 18994 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( F `  ( ( 2  x.  y )  -  1 ) ) )
150 iihalf2 18911 . . . . . . . . . . . 12  |-  ( y  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 ) )
151150adantl 453 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( 2  x.  y )  - 
1 )  e.  ( 0 [,] 1 ) )
152133sseli 3304 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  e.  RR )
153152recnd 9070 . . . . . . . . . . . . . . 15  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  e.  CC )
154 subcl 9261 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( ( 2  x.  y )  -  1 )  e.  CC )  ->  ( 1  -  ( ( 2  x.  y )  -  1 ) )  e.  CC )
15556, 153, 154sylancr 645 . . . . . . . . . . . . . 14  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  -  ( ( 2  x.  y )  -  1 ) )  e.  CC )
156155mulid2d 9062 . . . . . . . . . . . . 13  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) )  =  ( 1  -  ( ( 2  x.  y )  -  1 ) ) )
157156oveq2d 6056 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) )  =  ( 1  -  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) )
158 nncan 9286 . . . . . . . . . . . . 13  |-  ( ( 1  e.  CC  /\  ( ( 2  x.  y )  -  1 )  e.  CC )  ->  ( 1  -  ( 1  -  (
( 2  x.  y
)  -  1 ) ) )  =  ( ( 2  x.  y
)  -  1 ) )
15956, 153, 158sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
1  -  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) )  =  ( ( 2  x.  y )  - 
1 ) )
160157, 159eqtr2d 2437 . . . . . . . . . . 11  |-  ( ( ( 2  x.  y
)  -  1 )  e.  ( 0 [,] 1 )  ->  (
( 2  x.  y
)  -  1 )  =  ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
161151, 160syl 16 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( 2  x.  y )  - 
1 )  =  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
162161fveq2d 5691 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( F `  ( ( 2  x.  y )  -  1 ) )  =  ( F `  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )
163149, 162eqtrd 2436 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( (
1  /  2 ) [,] 1 ) )  ->  ( ( G ( *p `  J
) F ) `  y )  =  ( F `  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )
164148, 163sylan2 461 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( y  e.  ( 0 [,] 1 )  /\  -.  y  <_ 
( 1  /  2
) ) )  -> 
( ( G ( *p `  J ) F ) `  y
)  =  ( F `
 ( 1  -  ( 1  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )
165164anassrs 630 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  (
( G ( *p
`  J ) F ) `  y )  =  ( F `  ( 1  -  (
1  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) ) ) )
166147, 165eqtr4d 2439 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  /\  -.  y  <_  ( 1  /  2
) )  ->  ( F `  if (
y  <_  ( 1  /  2 ) ,  ( 1  -  (
1  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) )  =  ( ( G ( *p `  J ) F ) `
 y ) )
167144, 166pm2.61dan 767 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( F `  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 1  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 1  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  =  ( ( G ( *p
`  J ) F ) `  y ) )
168121, 167eqtrd 2436 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 0 )  =  ( ( G ( *p
`  J ) F ) `  y ) )
169133sseli 3304 . . . . . . . . . . . . 13  |-  ( y  e.  ( 0 [,] 1 )  ->  y  e.  RR )
170169recnd 9070 . . . . . . . . . . . 12  |-  ( y  e.  ( 0 [,] 1 )  ->  y  e.  CC )
171 mulcl 9030 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  y  e.  CC )  ->  ( 2  x.  y
)  e.  CC )
17249, 170, 171sylancr 645 . . . . . . . . . . 11  |-  ( y  e.  ( 0 [,] 1 )  ->  (
2  x.  y )  e.  CC )
173172adantl 453 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 2  x.  y )  e.  CC )
174173mul02d 9220 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0  x.  ( 2  x.  y
) )  =  0 )
175174oveq2d 6056 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
2  x.  y ) ) )  =  ( 1  -  0 ) )
176175, 57syl6eq 2452 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
2  x.  y ) ) )  =  1 )
177 subcl 9261 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  y
)  e.  CC  /\  1  e.  CC )  ->  ( ( 2  x.  y )  -  1 )  e.  CC )
178173, 56, 177sylancl 644 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( ( 2  x.  y )  - 
1 )  e.  CC )
17956, 178, 154sylancr 645 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( ( 2  x.  y )  -  1 ) )  e.  CC )
180179mul02d 9220 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) )  =  0 )
181180oveq2d 6056 . . . . . . . 8  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) )  =  ( 1  -  0 ) )
182181, 57syl6eq 2452 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) )  =  1 )
183176, 182ifeq12d 3715 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  if ( y  <_ 
( 1  /  2
) ,  1 ,  1 ) )
184 ifid 3731 . . . . . 6  |-  if ( y  <_  ( 1  /  2 ) ,  1 ,  1 )  =  1
185183, 184syl6eq 2452 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )  =  1 )
186185fveq2d 5691 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( F `  if ( y  <_  (
1  /  2 ) ,  ( 1  -  ( 0  x.  (
2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  =  ( F `  1 ) )
187 simpl 444 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  1 )  ->  s  =  y )
188187breq1d 4182 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( s  <_ 
( 1  /  2
)  <->  y  <_  (
1  /  2 ) ) )
189 simpr 448 . . . . . . . . . . . 12  |-  ( ( s  =  y  /\  t  =  1 )  ->  t  =  1 )
190189oveq2d 6056 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  t )  =  ( 1  -  1 ) )
191190, 11syl6eq 2452 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  t )  =  0 )
192187oveq2d 6056 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 2  x.  s )  =  ( 2  x.  y ) )
193191, 192oveq12d 6058 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( ( 1  -  t )  x.  ( 2  x.  s
) )  =  ( 0  x.  ( 2  x.  y ) ) )
194193oveq2d 6056 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) )  =  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) )
195192oveq1d 6055 . . . . . . . . . . 11  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( ( 2  x.  s )  - 
1 )  =  ( ( 2  x.  y
)  -  1 ) )
196195oveq2d 6056 . . . . . . . . . 10  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  ( ( 2  x.  y )  -  1 ) ) )
197191, 196oveq12d 6058 . . . . . . . . 9  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  =  ( 0  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) )
198197oveq2d 6056 . . . . . . . 8  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) )  =  ( 1  -  ( 0  x.  ( 1  -  ( ( 2  x.  y )  -  1 ) ) ) ) )
199188, 194, 198ifbieq12d 3721 . . . . . . 7  |-  ( ( s  =  y  /\  t  =  1 )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  if ( y  <_ 
( 1  /  2
) ,  ( 1  -  ( 0  x.  ( 2  x.  y
) ) ) ,  ( 1  -  (
0  x.  ( 1  -  ( ( 2  x.  y )  - 
1 ) ) ) ) ) )
200199fveq2d 5691 . . . . . 6  |-  ( ( s  =  y  /\  t  =  1 )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
201 fvex 5701 . . . . . 6  |-  ( F `
 if ( y  <_  ( 1  / 
2 ) ,  ( 1  -  ( 0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  (
1  -  ( ( 2  x.  y )  -  1 ) ) ) ) ) )  e.  _V
202200, 30, 201ovmpt2a 6163 . . . . 5  |-  ( ( y  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( y H 1 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
203103, 9, 202sylancl 644 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 1 )  =  ( F `  if ( y  <_  ( 1  /  2 ) ,  ( 1  -  (
0  x.  ( 2  x.  y ) ) ) ,  ( 1  -  ( 0  x.  ( 1  -  (
( 2  x.  y
)  -  1 ) ) ) ) ) ) )
20426fveq1i 5688 . . . . 5  |-  ( P `
 y )  =  ( ( ( 0 [,] 1 )  X. 
{ ( F ` 
1 ) } ) `
 y )
205 fvex 5701 . . . . . . 7  |-  ( F `
 1 )  e. 
_V
206205fvconst2 5906 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( F `  1
) } ) `  y )  =  ( F `  1 ) )
207206adantl 453 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { ( F `
 1 ) } ) `  y )  =  ( F ` 
1 ) )
208204, 207syl5eq 2448 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( P `  y )  =  ( F `  1 ) )
209186, 203, 2083eqtr4d 2446 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( y H 1 )  =  ( P `  y ) )
210 simpl 444 . . . . . . . . . . 11  |-  ( ( s  =  0  /\  t  =  y )  ->  s  =  0 )
211210, 41syl6eqbr 4209 . . . . . . . . . 10  |-  ( ( s  =  0  /\  t  =  y )  ->  s  <_  (
1  /  2 ) )
212 iftrue 3705 . . . . . . . . . 10  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s
) ) ) )
213211, 212syl 16 . . . . . . . . 9  |-  ( ( s  =  0  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  t
)  x.  ( 2  x.  s ) ) ) )
214 simpr 448 . . . . . . . . . . . 12  |-  ( ( s  =  0  /\  t  =  y )  ->  t  =  y )
215214oveq2d 6056 . . . . . . . . . . 11  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 1  -  t )  =  ( 1  -  y ) )
216210oveq2d 6056 . . . . . . . . . . . 12  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 2  x.  s )  =  ( 2  x.  0 ) )
21749mul01i 9212 . . . . . . . . . . . 12  |-  ( 2  x.  0 )  =  0
218216, 217syl6eq 2452 . . . . . . . . . . 11  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 2  x.  s )  =  0 )
219215, 218oveq12d 6058 . . . . . . . . . 10  |-  ( ( s  =  0  /\  t  =  y )  ->  ( ( 1  -  t )  x.  ( 2  x.  s
) )  =  ( ( 1  -  y
)  x.  0 ) )
220219oveq2d 6056 . . . . . . . . 9  |-  ( ( s  =  0  /\  t  =  y )  ->  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) )  =  ( 1  -  ( ( 1  -  y )  x.  0 ) ) )
221213, 220eqtrd 2436 . . . . . . . 8  |-  ( ( s  =  0  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  y
)  x.  0 ) ) )
222221fveq2d 5691 . . . . . . 7  |-  ( ( s  =  0  /\  t  =  y )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
223 fvex 5701 . . . . . . 7  |-  ( F `
 ( 1  -  ( ( 1  -  y )  x.  0 ) ) )  e. 
_V
224222, 30, 223ovmpt2a 6163 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0 H y )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
225104, 224mpan 652 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  (
0 H y )  =  ( F `  ( 1  -  (
( 1  -  y
)  x.  0 ) ) ) )
226 subcl 9261 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  y  e.  CC )  ->  ( 1  -  y
)  e.  CC )
22756, 170, 226sylancr 645 . . . . . . . . 9  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  y )  e.  CC )
228227mul01d 9221 . . . . . . . 8  |-  ( y  e.  ( 0 [,] 1 )  ->  (
( 1  -  y
)  x.  0 )  =  0 )
229228oveq2d 6056 . . . . . . 7  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  ( ( 1  -  y )  x.  0 ) )  =  ( 1  -  0 ) )
230229, 57syl6eq 2452 . . . . . 6  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1  -  ( ( 1  -  y )  x.  0 ) )  =  1 )
231230fveq2d 5691 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) )  =  ( F ` 
1 ) )
232225, 231eqtrd 2436 . . . 4  |-  ( y  e.  ( 0 [,] 1 )  ->  (
0 H y )  =  ( F ` 
1 ) )
2338, 6pco0 18992 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
( G ( *p
`  J ) F ) `  0 )  =  ( G ` 
0 ) )
234 oveq2 6048 . . . . . . . . 9  |-  ( x  =  0  ->  (
1  -  x )  =  ( 1  -  0 ) )
235234, 57syl6eq 2452 . . . . . . . 8  |-  ( x  =  0  ->  (
1  -  x )  =  1 )
236235fveq2d 5691 . . . . . . 7  |-  ( x  =  0  ->  ( F `  ( 1  -  x ) )  =  ( F `  1
) )
237236, 1, 205fvmpt 5765 . . . . . 6  |-  ( 0  e.  ( 0 [,] 1 )  ->  ( G `  0 )  =  ( F ` 
1 ) )
238104, 237ax-mp 8 . . . . 5  |-  ( G `
 0 )  =  ( F `  1
)
239233, 238syl6req 2453 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( F `  1 )  =  ( ( G ( *p `  J
) F ) ` 
0 ) )
240232, 239sylan9eqr 2458 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 0 H y )  =  ( ( G ( *p
`  J ) F ) `  0 ) )
24139, 37ltnlei 9150 . . . . . . . . . . . 12  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
24242, 241mpbi 200 . . . . . . . . . . 11  |-  -.  1  <_  ( 1  /  2
)
243 simpl 444 . . . . . . . . . . . 12  |-  ( ( s  =  1  /\  t  =  y )  ->  s  =  1 )
244243breq1d 4182 . . . . . . . . . . 11  |-  ( ( s  =  1  /\  t  =  y )  ->  ( s  <_ 
( 1  /  2
)  <->  1  <_  (
1  /  2 ) ) )
245242, 244mtbiri 295 . . . . . . . . . 10  |-  ( ( s  =  1  /\  t  =  y )  ->  -.  s  <_  ( 1  /  2 ) )
246 iffalse 3706 . . . . . . . . . 10  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) ) ) )
247245, 246syl 16 . . . . . . . . 9  |-  ( ( s  =  1  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  t
)  x.  ( 1  -  ( ( 2  x.  s )  - 
1 ) ) ) ) )
248 simpr 448 . . . . . . . . . . . 12  |-  ( ( s  =  1  /\  t  =  y )  ->  t  =  y )
249248oveq2d 6056 . . . . . . . . . . 11  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  t )  =  ( 1  -  y ) )
250243oveq2d 6056 . . . . . . . . . . . . . . . 16  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 2  x.  s )  =  ( 2  x.  1 ) )
25149mulid1i 9048 . . . . . . . . . . . . . . . 16  |-  ( 2  x.  1 )  =  2
252250, 251syl6eq 2452 . . . . . . . . . . . . . . 15  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 2  x.  s )  =  2 )
253252oveq1d 6055 . . . . . . . . . . . . . 14  |-  ( ( s  =  1  /\  t  =  y )  ->  ( ( 2  x.  s )  - 
1 )  =  ( 2  -  1 ) )
254 2m1e1 10051 . . . . . . . . . . . . . 14  |-  ( 2  -  1 )  =  1
255253, 254syl6eq 2452 . . . . . . . . . . . . 13  |-  ( ( s  =  1  /\  t  =  y )  ->  ( ( 2  x.  s )  - 
1 )  =  1 )
256255oveq2d 6056 . . . . . . . . . . . 12  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  ( 1  -  1 ) )
257256, 11syl6eq 2452 . . . . . . . . . . 11  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  ( ( 2  x.  s )  -  1 ) )  =  0 )
258249, 257oveq12d 6058 . . . . . . . . . 10  |-  ( ( s  =  1  /\  t  =  y )  ->  ( ( 1  -  t )  x.  ( 1  -  (
( 2  x.  s
)  -  1 ) ) )  =  ( ( 1  -  y
)  x.  0 ) )
259258oveq2d 6056 . . . . . . . . 9  |-  ( ( s  =  1  /\  t  =  y )  ->  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) )  =  ( 1  -  ( ( 1  -  y )  x.  0 ) ) )
260247, 259eqtrd 2436 . . . . . . . 8  |-  ( ( s  =  1  /\  t  =  y )  ->  if ( s  <_  ( 1  / 
2 ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  (
1  -  ( ( 2  x.  s )  -  1 ) ) ) ) )  =  ( 1  -  (
( 1  -  y
)  x.  0 ) ) )
261260fveq2d 5691 . . . . . . 7  |-  ( ( s  =  1  /\  t  =  y )  ->  ( F `  if ( s  <_  (
1  /  2 ) ,  ( 1  -  ( ( 1  -  t )  x.  (
2  x.  s ) ) ) ,  ( 1  -  ( ( 1  -  t )  x.  ( 1  -  ( ( 2  x.  s )  -  1 ) ) ) ) ) )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
262261, 30, 223ovmpt2a 6163 . . . . . 6  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1 H y )  =  ( F `  ( 1  -  ( ( 1  -  y )  x.  0 ) ) ) )
2639, 262mpan 652 . . . . 5  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1 H y )  =  ( F `  ( 1  -  (
( 1  -  y
)  x.  0 ) ) ) )
264263, 231eqtrd 2436 . . . 4  |-  ( y  e.  ( 0 [,] 1 )  ->  (
1 H y )  =  ( F ` 
1 ) )
2658, 6pco1 18993 . . . . 5  |-  ( F  e.  ( II  Cn  J )  ->  (
( G ( *p
`  J ) F ) `  1 )  =  ( F ` 
1 ) )
266265eqcomd 2409 . . . 4  |-  ( F  e.  ( II  Cn  J )  ->  ( F `  1 )  =  ( ( G ( *p `  J
) F ) ` 
1 ) )
267264, 266sylan9eqr 2458 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( 1 H y )  =  ( ( G ( *p
`  J ) F ) `  1 ) )
26817, 29, 102, 168, 209, 240, 267isphtpy2d 18965 . 2  |-  ( F  e.  ( II  Cn  J )  ->  H  e.  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P ) )
269 ne0i 3594 . . . 4  |-  ( H  e.  ( ( G ( *p `  J
) F ) (
PHtpy `  J ) P )  ->  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  =/=  (/) )
270268, 269syl 16 . . 3  |-  ( F  e.  ( II  Cn  J )  ->  (
( G ( *p
`  J ) F ) ( PHtpy `  J
) P )  =/=  (/) )
271 isphtpc 18972 . . 3  |-  ( ( G ( *p `  J ) F ) (  ~=ph  `  J ) P  <->  ( ( G ( *p `  J
) F )  e.  ( II  Cn  J
)  /\  P  e.  ( II  Cn  J
)  /\  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  =/=  (/) ) )
27217, 29, 270, 271syl3anbrc 1138 . 2  |-  ( F  e.  ( II  Cn  J )  ->  ( G ( *p `  J ) F ) (  ~=ph  `  J ) P )
273268, 272jca 519 1  |-  ( F  e.  ( II  Cn  J )  ->  ( H  e.  ( ( G ( *p `  J ) F ) ( PHtpy `  J ) P )  /\  ( G ( *p `  J ) F ) (  ~=ph  `  J ) P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567    C_ wss 3280   (/)c0 3588   ifcif 3699   {csn 3774   U.cuni 3975   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   ran crn 4838   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   2c2 10005   (,)cioo 10872   [,]cicc 10875   ↾t crest 13603   topGenctg 13620   Topctop 16913  TopOnctopon 16914    Cn ccn 17242    tX ctx 17545   IIcii 18858   PHtpycphtpy 18946    ~=ph cphtpc 18947   *pcpco 18978
This theorem is referenced by:  pcorev  19005
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-cn 17245  df-cnp 17246  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-ii 18860  df-htpy 18948  df-phtpy 18949  df-phtpc 18970  df-pco 18983
  Copyright terms: Public domain W3C validator