MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt2 Structured version   Unicode version

Theorem pcopt2 20564
Description: Concatenation with a point does not affect homotopy class. (Contributed by Mario Carneiro, 12-Feb-2015.)
Hypothesis
Ref Expression
pcopt.1  |-  P  =  ( ( 0 [,] 1 )  X.  { Y } )
Assertion
Ref Expression
pcopt2  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( F ( *p
`  J ) P ) (  ~=ph  `  J
) F )

Proof of Theorem pcopt2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . 9  |-  P  =  ( ( 0 [,] 1 )  X.  { Y } )
21fveq1i 5685 . . . . . . . 8  |-  ( P `
 ( ( 2  x.  x )  - 
1 ) )  =  ( ( ( 0 [,] 1 )  X. 
{ Y } ) `
 ( ( 2  x.  x )  - 
1 ) )
3 simpr 461 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( F `  1
)  =  Y )
4 iiuni 20426 . . . . . . . . . . . . 13  |-  ( 0 [,] 1 )  = 
U. II
5 eqid 2437 . . . . . . . . . . . . 13  |-  U. J  =  U. J
64, 5cnf 18819 . . . . . . . . . . . 12  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
76adantr 465 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  ->  F : ( 0 [,] 1 ) --> U. J
)
8 1elunit 11396 . . . . . . . . . . 11  |-  1  e.  ( 0 [,] 1
)
9 ffvelrn 5834 . . . . . . . . . . 11  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  1  e.  ( 0 [,] 1
) )  ->  ( F `  1 )  e.  U. J )
107, 8, 9sylancl 662 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( F `  1
)  e.  U. J
)
113, 10eqeltrrd 2512 . . . . . . . . 9  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  ->  Y  e.  U. J )
12 elii2 20477 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  x  e.  ( ( 1  /  2
) [,] 1 ) )
13 iihalf2 20474 . . . . . . . . . 10  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  x
)  -  1 )  e.  ( 0 [,] 1 ) )
1412, 13syl 16 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  ( ( 2  x.  x )  - 
1 )  e.  ( 0 [,] 1 ) )
15 fvconst2g 5924 . . . . . . . . 9  |-  ( ( Y  e.  U. J  /\  ( ( 2  x.  x )  -  1 )  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { Y }
) `  ( (
2  x.  x )  -  1 ) )  =  Y )
1611, 14, 15syl2an 477 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
1 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  / 
2 ) ) )  ->  ( ( ( 0 [,] 1 )  X.  { Y }
) `  ( (
2  x.  x )  -  1 ) )  =  Y )
172, 16syl5eq 2481 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
1 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  / 
2 ) ) )  ->  ( P `  ( ( 2  x.  x )  -  1 ) )  =  Y )
18 simplr 754 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
1 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  / 
2 ) ) )  ->  ( F ` 
1 )  =  Y )
1917, 18eqtr4d 2472 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
1 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  / 
2 ) ) )  ->  ( P `  ( ( 2  x.  x )  -  1 ) )  =  ( F `  1 ) )
2019anassrs 648 . . . . 5  |-  ( ( ( ( F  e.  ( II  Cn  J
)  /\  ( F `  1 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  /\  -.  x  <_  ( 1  / 
2 ) )  -> 
( P `  (
( 2  x.  x
)  -  1 ) )  =  ( F `
 1 ) )
2120ifeq2da 3813 . . . 4  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
1 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( P `
 ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( F ` 
1 ) ) )
2221mpteq2dva 4371 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( P `  (
( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( F `  1
) ) ) )
23 simpl 457 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  ->  F  e.  ( II  Cn  J ) )
24 cntop2 18814 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
2524adantr 465 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  ->  J  e.  Top )
265toptopon 18507 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
2725, 26sylib 196 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  ->  J  e.  (TopOn `  U. J ) )
281pcoptcl 20562 . . . . . 6  |-  ( ( J  e.  (TopOn `  U. J )  /\  Y  e.  U. J )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  Y  /\  ( P ` 
1 )  =  Y ) )
2927, 11, 28syl2anc 661 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  Y  /\  ( P ` 
1 )  =  Y ) )
3029simp1d 1000 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  ->  P  e.  ( II  Cn  J ) )
3123, 30pcoval 20552 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( F ( *p
`  J ) P )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( P `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
32 iftrue 3790 . . . . . . . . 9  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  ( 2  x.  x
) ,  1 )  =  ( 2  x.  x ) )
3332adantl 466 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
2 ) )  ->  if ( x  <_  (
1  /  2 ) ,  ( 2  x.  x ) ,  1 )  =  ( 2  x.  x ) )
34 elii1 20476 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  <->  ( x  e.  ( 0 [,] 1
)  /\  x  <_  ( 1  /  2 ) ) )
35 iihalf1 20472 . . . . . . . . 9  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  x )  e.  ( 0 [,] 1 ) )
3634, 35sylbir 213 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
2 ) )  -> 
( 2  x.  x
)  e.  ( 0 [,] 1 ) )
3733, 36eqeltrd 2511 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
2 ) )  ->  if ( x  <_  (
1  /  2 ) ,  ( 2  x.  x ) ,  1 )  e.  ( 0 [,] 1 ) )
3837ex 434 . . . . . 6  |-  ( x  e.  ( 0 [,] 1 )  ->  (
x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( 2  x.  x ) ,  1 )  e.  ( 0 [,] 1 ) ) )
39 iffalse 3792 . . . . . . 7  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( 2  x.  x ) ,  1 )  =  1 )
4039, 8syl6eqel 2525 . . . . . 6  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( 2  x.  x ) ,  1 )  e.  ( 0 [,] 1 ) )
4138, 40pm2.61d1 159 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  ->  if ( x  <_  ( 1  /  2 ) ,  ( 2  x.  x
) ,  1 )  e.  ( 0 [,] 1 ) )
4241adantl 466 . . . 4  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
1 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( 2  x.  x
) ,  1 )  e.  ( 0 [,] 1 ) )
43 eqidd 2438 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( 2  x.  x ) ,  1 ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( 2  x.  x ) ,  1 ) ) )
447feqmptd 5737 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  ->  F  =  ( y  e.  ( 0 [,] 1
)  |->  ( F `  y ) ) )
45 fveq2 5684 . . . . 5  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  ( 2  x.  x ) ,  1 )  -> 
( F `  y
)  =  ( F `
 if ( x  <_  ( 1  / 
2 ) ,  ( 2  x.  x ) ,  1 ) ) )
46 fvif 5695 . . . . 5  |-  ( F `
 if ( x  <_  ( 1  / 
2 ) ,  ( 2  x.  x ) ,  1 ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  x ) ) ,  ( F ` 
1 ) )
4745, 46syl6eq 2485 . . . 4  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  ( 2  x.  x ) ,  1 )  -> 
( F `  y
)  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  x ) ) ,  ( F `
 1 ) ) )
4842, 43, 44, 47fmptco 5869 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( F  o.  (
x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( 2  x.  x ) ,  1 ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 ( 2  x.  x ) ) ,  ( F `  1
) ) ) )
4922, 31, 483eqtr4d 2479 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( F ( *p
`  J ) P )  =  ( F  o.  ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  ( 2  x.  x ) ,  1 ) ) ) )
50 iitopon 20424 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
5150a1i 11 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  ->  II  e.  (TopOn `  (
0 [,] 1 ) ) )
5251cnmptid 19203 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( II  Cn  II ) )
53 0elunit 11395 . . . . . 6  |-  0  e.  ( 0 [,] 1
)
5453a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
0  e.  ( 0 [,] 1 ) )
5551, 51, 54cnmptc 19204 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( II  Cn  II ) )
56 eqid 2437 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
57 eqid 2437 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
58 eqid 2437 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
59 dfii2 20427 . . . . 5  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
60 0re 9378 . . . . . 6  |-  0  e.  RR
6160a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
0  e.  RR )
62 1re 9377 . . . . . 6  |-  1  e.  RR
6362a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
1  e.  RR )
64 halfre 10532 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
65 halfgt0 10534 . . . . . . . 8  |-  0  <  ( 1  /  2
)
6660, 64, 65ltleii 9489 . . . . . . 7  |-  0  <_  ( 1  /  2
)
67 halflt1 10535 . . . . . . . 8  |-  ( 1  /  2 )  <  1
6864, 62, 67ltleii 9489 . . . . . . 7  |-  ( 1  /  2 )  <_ 
1
6960, 62elicc2i 11353 . . . . . . 7  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
7064, 66, 68, 69mpbir3an 1170 . . . . . 6  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
7170a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( 1  /  2
)  e.  ( 0 [,] 1 ) )
72 simprl 755 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
1 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
y  =  ( 1  /  2 ) )
7372oveq2d 6102 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
1 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  ( 2  x.  ( 1  / 
2 ) ) )
74 2cn 10384 . . . . . . 7  |-  2  e.  CC
75 2ne0 10406 . . . . . . 7  |-  2  =/=  0
7674, 75recidi 10054 . . . . . 6  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
7773, 76syl6eq 2485 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
1 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  1 )
78 retopon 20311 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
79 iccssre 11369 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
8060, 64, 79mp2an 672 . . . . . . . 8  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
81 resttopon 18734 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
8278, 80, 81mp2an 672 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
8382a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
8483, 51cnmpt1st 19210 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) ) ) )
8557iihalf1cn 20473 . . . . . . 7  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  x ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
8685a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( x  e.  ( 0 [,] ( 1  /  2 ) ) 
|->  ( 2  x.  x
) )  e.  ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  Cn  II ) )
87 oveq2 6094 . . . . . 6  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
8883, 51, 84, 83, 86, 87cnmpt21 19213 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( 2  x.  y
) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
89 iccssre 11369 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
9064, 62, 89mp2an 672 . . . . . . . 8  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
91 resttopon 18734 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
9278, 90, 91mp2an 672 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
9392a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
948a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
1  e.  ( 0 [,] 1 ) )
9593, 51, 51, 94cnmpt2c 19212 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  1 )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
9656, 57, 58, 59, 61, 63, 71, 51, 77, 88, 95cnmpt2pc 20469 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  ( 2  x.  y ) ,  1 ) )  e.  ( ( II  tX  II )  Cn  II ) )
97 breq1 4288 . . . . . 6  |-  ( y  =  x  ->  (
y  <_  ( 1  /  2 )  <->  x  <_  ( 1  /  2 ) ) )
98 oveq2 6094 . . . . . 6  |-  ( y  =  x  ->  (
2  x.  y )  =  ( 2  x.  x ) )
9997, 98ifbieq1d 3805 . . . . 5  |-  ( y  =  x  ->  if ( y  <_  (
1  /  2 ) ,  ( 2  x.  y ) ,  1 )  =  if ( x  <_  ( 1  /  2 ) ,  ( 2  x.  x
) ,  1 ) )
10099adantr 465 . . . 4  |-  ( ( y  =  x  /\  z  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  ( 2  x.  y ) ,  1 )  =  if ( x  <_ 
( 1  /  2
) ,  ( 2  x.  x ) ,  1 ) )
10151, 52, 55, 51, 51, 96, 100cnmpt12 19209 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( 2  x.  x ) ,  1 ) )  e.  ( II  Cn  II ) )
102 id 22 . . . . . . . 8  |-  ( x  =  0  ->  x  =  0 )
103102, 66syl6eqbr 4322 . . . . . . 7  |-  ( x  =  0  ->  x  <_  ( 1  /  2
) )
104103, 32syl 16 . . . . . 6  |-  ( x  =  0  ->  if ( x  <_  ( 1  /  2 ) ,  ( 2  x.  x
) ,  1 )  =  ( 2  x.  x ) )
105 oveq2 6094 . . . . . . 7  |-  ( x  =  0  ->  (
2  x.  x )  =  ( 2  x.  0 ) )
106 2t0e0 10469 . . . . . . 7  |-  ( 2  x.  0 )  =  0
107105, 106syl6eq 2485 . . . . . 6  |-  ( x  =  0  ->  (
2  x.  x )  =  0 )
108104, 107eqtrd 2469 . . . . 5  |-  ( x  =  0  ->  if ( x  <_  ( 1  /  2 ) ,  ( 2  x.  x
) ,  1 )  =  0 )
109 eqid 2437 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( 2  x.  x
) ,  1 ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( 2  x.  x
) ,  1 ) )
110 c0ex 9372 . . . . 5  |-  0  e.  _V
111108, 109, 110fvmpt 5767 . . . 4  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( 2  x.  x ) ,  1 ) ) ` 
0 )  =  0 )
11253, 111mp1i 12 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  ( 2  x.  x ) ,  1 ) ) `
 0 )  =  0 )
11364, 62ltnlei 9487 . . . . . . . 8  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
11467, 113mpbi 208 . . . . . . 7  |-  -.  1  <_  ( 1  /  2
)
115 breq1 4288 . . . . . . 7  |-  ( x  =  1  ->  (
x  <_  ( 1  /  2 )  <->  1  <_  ( 1  /  2 ) ) )
116114, 115mtbiri 303 . . . . . 6  |-  ( x  =  1  ->  -.  x  <_  ( 1  / 
2 ) )
117116, 39syl 16 . . . . 5  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  ( 2  x.  x
) ,  1 )  =  1 )
118 1ex 9373 . . . . 5  |-  1  e.  _V
119117, 109, 118fvmpt 5767 . . . 4  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( 2  x.  x ) ,  1 ) ) ` 
1 )  =  1 )
1208, 119mp1i 12 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  ( 2  x.  x ) ,  1 ) ) `
 1 )  =  1 )
12123, 101, 112, 120reparpht 20539 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( F  o.  (
x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( 2  x.  x ) ,  1 ) ) ) ( 
~=ph  `  J ) F )
12249, 121eqbrtrd 4305 1  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  1 )  =  Y )  -> 
( F ( *p
`  J ) P ) (  ~=ph  `  J
) F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    C_ wss 3321   ifcif 3784   {csn 3870   U.cuni 4084   class class class wbr 4285    e. cmpt 4343    X. cxp 4830   ran crn 4833    o. ccom 4836   -->wf 5407   ` cfv 5411  (class class class)co 6086   RRcr 9273   0cc0 9274   1c1 9275    x. cmul 9279    < clt 9410    <_ cle 9411    - cmin 9587    / cdiv 9985   2c2 10363   (,)cioo 11292   [,]cicc 11295   ↾t crest 14351   topGenctg 14368   Topctop 18467  TopOnctopon 18468    Cn ccn 18797   IIcii 20420    ~=ph cphtpc 20510   *pcpco 20541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-int 4122  df-iun 4166  df-iin 4167  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-se 4672  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-isom 5420  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15537  df-cntz 15824  df-cmn 16268  df-psmet 17778  df-xmet 17779  df-met 17780  df-bl 17781  df-mopn 17782  df-cnfld 17788  df-top 18472  df-bases 18474  df-topon 18475  df-topsp 18476  df-cld 18592  df-cn 18800  df-cnp 18801  df-tx 19104  df-hmeo 19297  df-xms 19864  df-ms 19865  df-tms 19866  df-ii 20422  df-htpy 20511  df-phtpy 20512  df-phtpc 20533  df-pco 20546
This theorem is referenced by:  pcophtb  20570  pi1xfrcnvlem  20597
  Copyright terms: Public domain W3C validator