MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt Structured version   Visualization version   Unicode version

Theorem pcopt 22131
Description: Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
pcopt.1  |-  P  =  ( ( 0 [,] 1 )  X.  { Y } )
Assertion
Ref Expression
pcopt  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F ) (  ~=ph  `  J
) F )

Proof of Theorem pcopt
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . . 10  |-  P  =  ( ( 0 [,] 1 )  X.  { Y } )
21fveq1i 5880 . . . . . . . . 9  |-  ( P `
 ( 2  x.  x ) )  =  ( ( ( 0 [,] 1 )  X. 
{ Y } ) `
 ( 2  x.  x ) )
3 simpr 468 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F `  0
)  =  Y )
4 iiuni 21991 . . . . . . . . . . . . . 14  |-  ( 0 [,] 1 )  = 
U. II
5 eqid 2471 . . . . . . . . . . . . . 14  |-  U. J  =  U. J
64, 5cnf 20339 . . . . . . . . . . . . 13  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
76adantr 472 . . . . . . . . . . . 12  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  F : ( 0 [,] 1 ) --> U. J
)
8 0elunit 11776 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,] 1
)
9 ffvelrn 6035 . . . . . . . . . . . 12  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  0  e.  ( 0 [,] 1
) )  ->  ( F `  0 )  e.  U. J )
107, 8, 9sylancl 675 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F `  0
)  e.  U. J
)
113, 10eqeltrrd 2550 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  Y  e.  U. J )
12 elii1 22041 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  <->  ( x  e.  ( 0 [,] 1
)  /\  x  <_  ( 1  /  2 ) ) )
13 iihalf1 22037 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  x )  e.  ( 0 [,] 1 ) )
1412, 13sylbir 218 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
2 ) )  -> 
( 2  x.  x
)  e.  ( 0 [,] 1 ) )
15 fvconst2g 6134 . . . . . . . . . 10  |-  ( ( Y  e.  U. J  /\  ( 2  x.  x
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { Y }
) `  ( 2  x.  x ) )  =  Y )
1611, 14, 15syl2an 485 . . . . . . . . 9  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( ( ( 0 [,] 1 )  X. 
{ Y } ) `
 ( 2  x.  x ) )  =  Y )
172, 16syl5eq 2517 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( P `  (
2  x.  x ) )  =  Y )
18 simplr 770 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( F `  0
)  =  Y )
1917, 18eqtr4d 2508 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( P `  (
2  x.  x ) )  =  ( F `
 0 ) )
2019ifeq1d 3890 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) )
2120expr 626 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  (
x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
22 iffalse 3881 . . . . . 6  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  ( F `
 ( ( 2  x.  x )  - 
1 ) ) )
23 iffalse 3881 . . . . . 6  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( F ` 
0 ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  ( F `
 ( ( 2  x.  x )  - 
1 ) ) )
2422, 23eqtr4d 2508 . . . . 5  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) )
2521, 24pm2.61d1 164 . . . 4  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( P `  (
2  x.  x ) ) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  0 ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) ) )
2625mpteq2dva 4482 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( P `
 ( 2  x.  x ) ) ,  ( F `  (
( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 0 ) ,  ( F `  (
( 2  x.  x
)  -  1 ) ) ) ) )
27 cntop2 20334 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
2827adantr 472 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  J  e.  Top )
295toptopon 20025 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
3028, 29sylib 201 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  J  e.  (TopOn `  U. J ) )
311pcoptcl 22130 . . . . . 6  |-  ( ( J  e.  (TopOn `  U. J )  /\  Y  e.  U. J )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  Y  /\  ( P ` 
1 )  =  Y ) )
3230, 11, 31syl2anc 673 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  Y  /\  ( P ` 
1 )  =  Y ) )
3332simp1d 1042 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  P  e.  ( II  Cn  J ) )
34 simpl 464 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  F  e.  ( II  Cn  J ) )
3533, 34pcoval 22120 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( P `  (
2  x.  x ) ) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
36 iffalse 3881 . . . . . . . . 9  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) )  =  ( ( 2  x.  x )  -  1 ) )
3736adantl 473 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  =  ( ( 2  x.  x )  -  1 ) )
38 elii2 22042 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  x  e.  ( ( 1  /  2
) [,] 1 ) )
39 iihalf2 22039 . . . . . . . . 9  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  x
)  -  1 )  e.  ( 0 [,] 1 ) )
4038, 39syl 17 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  ( ( 2  x.  x )  - 
1 )  e.  ( 0 [,] 1 ) )
4137, 40eqeltrd 2549 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  e.  ( 0 [,] 1
) )
4241ex 441 . . . . . 6  |-  ( x  e.  ( 0 [,] 1 )  ->  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) )  e.  ( 0 [,] 1 ) ) )
43 iftrue 3878 . . . . . . 7  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  0 )
4443, 8syl6eqel 2557 . . . . . 6  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  e.  ( 0 [,] 1 ) )
4542, 44pm2.61d2 165 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  e.  ( 0 [,] 1 ) )
4645adantl 473 . . . 4  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  e.  ( 0 [,] 1 ) )
47 eqid 2471 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )
4847a1i 11 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) ) )
497feqmptd 5932 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  F  =  ( y  e.  ( 0 [,] 1
)  |->  ( F `  y ) ) )
50 fveq2 5879 . . . . 5  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  -> 
( F `  y
)  =  ( F `
 if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) )
51 fvif 5890 . . . . 5  |-  ( F `
 if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  0 ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )
5250, 51syl6eq 2521 . . . 4  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  -> 
( F `  y
)  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) )
5346, 48, 49, 52fmptco 6072 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F  o.  (
x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 0 ) ,  ( F `  (
( 2  x.  x
)  -  1 ) ) ) ) )
5426, 35, 533eqtr4d 2515 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F )  =  ( F  o.  ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) ) )
55 iitopon 21989 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
5655a1i 11 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  II  e.  (TopOn `  (
0 [,] 1 ) ) )
5756cnmptid 20753 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( II  Cn  II ) )
588a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
0  e.  ( 0 [,] 1 ) )
5956, 56, 58cnmptc 20754 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( II  Cn  II ) )
60 eqid 2471 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
61 eqid 2471 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
62 eqid 2471 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
63 dfii2 21992 . . . . 5  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
64 0re 9661 . . . . . 6  |-  0  e.  RR
6564a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
0  e.  RR )
66 1re 9660 . . . . . 6  |-  1  e.  RR
6766a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
1  e.  RR )
68 halfre 10851 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
69 halfgt0 10853 . . . . . . . 8  |-  0  <  ( 1  /  2
)
7064, 68, 69ltleii 9775 . . . . . . 7  |-  0  <_  ( 1  /  2
)
71 halflt1 10854 . . . . . . . 8  |-  ( 1  /  2 )  <  1
7268, 66, 71ltleii 9775 . . . . . . 7  |-  ( 1  /  2 )  <_ 
1
7364, 66elicc2i 11725 . . . . . . 7  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
7468, 70, 72, 73mpbir3an 1212 . . . . . 6  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
7574a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( 1  /  2
)  e.  ( 0 [,] 1 ) )
76 simprl 772 . . . . . . . . 9  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
y  =  ( 1  /  2 ) )
7776oveq2d 6324 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  ( 2  x.  ( 1  / 
2 ) ) )
78 2cn 10702 . . . . . . . . 9  |-  2  e.  CC
79 2ne0 10724 . . . . . . . . 9  |-  2  =/=  0
8078, 79recidi 10360 . . . . . . . 8  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
8177, 80syl6eq 2521 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  1 )
8281oveq1d 6323 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  y )  -  1 )  =  ( 1  -  1 ) )
83 1m1e0 10700 . . . . . 6  |-  ( 1  -  1 )  =  0
8482, 83syl6req 2522 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
0  =  ( ( 2  x.  y )  -  1 ) )
85 retopon 21862 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
86 iccssre 11741 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
8764, 68, 86mp2an 686 . . . . . . . 8  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
88 resttopon 20254 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
8985, 87, 88mp2an 686 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
9089a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
9190, 56, 56, 58cnmpt2c 20762 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
92 iccssre 11741 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
9368, 66, 92mp2an 686 . . . . . . . 8  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
94 resttopon 20254 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
9585, 93, 94mp2an 686 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
9695a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
9796, 56cnmpt1st 20760 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
9862iihalf2cn 22040 . . . . . . 7  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
9998a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
100 oveq2 6316 . . . . . . 7  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
101100oveq1d 6323 . . . . . 6  |-  ( x  =  y  ->  (
( 2  x.  x
)  -  1 )  =  ( ( 2  x.  y )  - 
1 ) )
10296, 56, 97, 96, 99, 101cnmpt21 20763 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( ( 2  x.  y )  -  1 ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
10360, 61, 62, 63, 65, 67, 75, 56, 84, 91, 102cnmpt2pc 22034 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  y )  -  1 ) ) )  e.  ( ( II  tX  II )  Cn  II ) )
104 breq1 4398 . . . . . 6  |-  ( y  =  x  ->  (
y  <_  ( 1  /  2 )  <->  x  <_  ( 1  /  2 ) ) )
105 oveq2 6316 . . . . . . 7  |-  ( y  =  x  ->  (
2  x.  y )  =  ( 2  x.  x ) )
106105oveq1d 6323 . . . . . 6  |-  ( y  =  x  ->  (
( 2  x.  y
)  -  1 )  =  ( ( 2  x.  x )  - 
1 ) )
107104, 106ifbieq2d 3897 . . . . 5  |-  ( y  =  x  ->  if ( y  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  y
)  -  1 ) )  =  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )
108107adantr 472 . . . 4  |-  ( ( y  =  x  /\  z  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  y )  - 
1 ) )  =  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )
10956, 57, 59, 56, 56, 103, 108cnmpt12 20759 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )  e.  ( II  Cn  II ) )
110 id 22 . . . . . . 7  |-  ( x  =  0  ->  x  =  0 )
111110, 70syl6eqbr 4433 . . . . . 6  |-  ( x  =  0  ->  x  <_  ( 1  /  2
) )
112111, 43syl 17 . . . . 5  |-  ( x  =  0  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  0 )
113 c0ex 9655 . . . . 5  |-  0  e.  _V
114112, 47, 113fvmpt 5963 . . . 4  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) ) ` 
0 )  =  0 )
1158, 114mp1i 13 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) `
 0 )  =  0 )
116 1elunit 11777 . . . 4  |-  1  e.  ( 0 [,] 1
)
11768, 66ltnlei 9773 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
11871, 117mpbi 213 . . . . . . . 8  |-  -.  1  <_  ( 1  /  2
)
119 breq1 4398 . . . . . . . 8  |-  ( x  =  1  ->  (
x  <_  ( 1  /  2 )  <->  1  <_  ( 1  /  2 ) ) )
120118, 119mtbiri 310 . . . . . . 7  |-  ( x  =  1  ->  -.  x  <_  ( 1  / 
2 ) )
121120, 36syl 17 . . . . . 6  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  ( ( 2  x.  x )  - 
1 ) )
122 oveq2 6316 . . . . . . . . 9  |-  ( x  =  1  ->  (
2  x.  x )  =  ( 2  x.  1 ) )
123 2t1e2 10781 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
124122, 123syl6eq 2521 . . . . . . . 8  |-  ( x  =  1  ->  (
2  x.  x )  =  2 )
125124oveq1d 6323 . . . . . . 7  |-  ( x  =  1  ->  (
( 2  x.  x
)  -  1 )  =  ( 2  -  1 ) )
126 2m1e1 10746 . . . . . . 7  |-  ( 2  -  1 )  =  1
127125, 126syl6eq 2521 . . . . . 6  |-  ( x  =  1  ->  (
( 2  x.  x
)  -  1 )  =  1 )
128121, 127eqtrd 2505 . . . . 5  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  1 )
129 1ex 9656 . . . . 5  |-  1  e.  _V
130128, 47, 129fvmpt 5963 . . . 4  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) ) ` 
1 )  =  1 )
131116, 130mp1i 13 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) `
 1 )  =  1 )
13234, 109, 115, 131reparpht 22107 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F  o.  (
x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) ) ) ) ( 
~=ph  `  J ) F )
13354, 132eqbrtrd 4416 1  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F ) (  ~=ph  `  J
) F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    C_ wss 3390   ifcif 3872   {csn 3959   U.cuni 4190   class class class wbr 4395    |-> cmpt 4454    X. cxp 4837   ran crn 4840    o. ccom 4843   -->wf 5585   ` cfv 5589  (class class class)co 6308   RRcr 9556   0cc0 9557   1c1 9558    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   2c2 10681   (,)cioo 11660   [,]cicc 11663   ↾t crest 15397   topGenctg 15414   Topctop 19994  TopOnctopon 19995    Cn ccn 20317   IIcii 21985    ~=ph cphtpc 22078   *pcpco 22109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-icc 11667  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-cn 20320  df-cnp 20321  df-tx 20654  df-hmeo 20847  df-xms 21413  df-ms 21414  df-tms 21415  df-ii 21987  df-htpy 22079  df-phtpy 22080  df-phtpc 22101  df-pco 22114
This theorem is referenced by:  pcophtb  22138  pi1grplem  22158  pi1xfr  22164  pi1xfrcnvlem  22165
  Copyright terms: Public domain W3C validator