MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcopt Structured version   Unicode version

Theorem pcopt 21939
Description: Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypothesis
Ref Expression
pcopt.1  |-  P  =  ( ( 0 [,] 1 )  X.  { Y } )
Assertion
Ref Expression
pcopt  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F ) (  ~=ph  `  J
) F )

Proof of Theorem pcopt
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcopt.1 . . . . . . . . . 10  |-  P  =  ( ( 0 [,] 1 )  X.  { Y } )
21fveq1i 5873 . . . . . . . . 9  |-  ( P `
 ( 2  x.  x ) )  =  ( ( ( 0 [,] 1 )  X. 
{ Y } ) `
 ( 2  x.  x ) )
3 simpr 462 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F `  0
)  =  Y )
4 iiuni 21802 . . . . . . . . . . . . . 14  |-  ( 0 [,] 1 )  = 
U. II
5 eqid 2420 . . . . . . . . . . . . . 14  |-  U. J  =  U. J
64, 5cnf 20186 . . . . . . . . . . . . 13  |-  ( F  e.  ( II  Cn  J )  ->  F : ( 0 [,] 1 ) --> U. J
)
76adantr 466 . . . . . . . . . . . 12  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  F : ( 0 [,] 1 ) --> U. J
)
8 0elunit 11737 . . . . . . . . . . . 12  |-  0  e.  ( 0 [,] 1
)
9 ffvelrn 6026 . . . . . . . . . . . 12  |-  ( ( F : ( 0 [,] 1 ) --> U. J  /\  0  e.  ( 0 [,] 1
) )  ->  ( F `  0 )  e.  U. J )
107, 8, 9sylancl 666 . . . . . . . . . . 11  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F `  0
)  e.  U. J
)
113, 10eqeltrrd 2509 . . . . . . . . . 10  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  Y  e.  U. J )
12 elii1 21852 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  <->  ( x  e.  ( 0 [,] 1
)  /\  x  <_  ( 1  /  2 ) ) )
13 iihalf1 21848 . . . . . . . . . . 11  |-  ( x  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  x )  e.  ( 0 [,] 1 ) )
1412, 13sylbir 216 . . . . . . . . . 10  |-  ( ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  / 
2 ) )  -> 
( 2  x.  x
)  e.  ( 0 [,] 1 ) )
15 fvconst2g 6124 . . . . . . . . . 10  |-  ( ( Y  e.  U. J  /\  ( 2  x.  x
)  e.  ( 0 [,] 1 ) )  ->  ( ( ( 0 [,] 1 )  X.  { Y }
) `  ( 2  x.  x ) )  =  Y )
1611, 14, 15syl2an 479 . . . . . . . . 9  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( ( ( 0 [,] 1 )  X. 
{ Y } ) `
 ( 2  x.  x ) )  =  Y )
172, 16syl5eq 2473 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( P `  (
2  x.  x ) )  =  Y )
18 simplr 760 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( F `  0
)  =  Y )
1917, 18eqtr4d 2464 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  -> 
( P `  (
2  x.  x ) )  =  ( F `
 0 ) )
2019ifeq1d 3924 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( x  e.  ( 0 [,] 1 )  /\  x  <_  ( 1  /  2
) ) )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) )
2120expr 618 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  (
x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
22 iffalse 3915 . . . . . 6  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  ( F `
 ( ( 2  x.  x )  - 
1 ) ) )
23 iffalse 3915 . . . . . 6  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( F ` 
0 ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  ( F `
 ( ( 2  x.  x )  - 
1 ) ) )
2422, 23eqtr4d 2464 . . . . 5  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( P `  ( 2  x.  x
) ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) )
2521, 24pm2.61d1 162 . . . 4  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  ( P `  (
2  x.  x ) ) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  0 ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) ) )
2625mpteq2dva 4503 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( P `
 ( 2  x.  x ) ) ,  ( F `  (
( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 0 ) ,  ( F `  (
( 2  x.  x
)  -  1 ) ) ) ) )
27 cntop2 20181 . . . . . . . 8  |-  ( F  e.  ( II  Cn  J )  ->  J  e.  Top )
2827adantr 466 . . . . . . 7  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  J  e.  Top )
295toptopon 19872 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
3028, 29sylib 199 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  J  e.  (TopOn `  U. J ) )
311pcoptcl 21938 . . . . . 6  |-  ( ( J  e.  (TopOn `  U. J )  /\  Y  e.  U. J )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  Y  /\  ( P ` 
1 )  =  Y ) )
3230, 11, 31syl2anc 665 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P  e.  ( II  Cn  J )  /\  ( P ` 
0 )  =  Y  /\  ( P ` 
1 )  =  Y ) )
3332simp1d 1017 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  P  e.  ( II  Cn  J ) )
34 simpl 458 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  F  e.  ( II  Cn  J ) )
3533, 34pcoval 21928 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( P `  (
2  x.  x ) ) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )
36 iffalse 3915 . . . . . . . . 9  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) )  =  ( ( 2  x.  x )  -  1 ) )
3736adantl 467 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  =  ( ( 2  x.  x )  -  1 ) )
38 elii2 21853 . . . . . . . . 9  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  x  e.  ( ( 1  /  2
) [,] 1 ) )
39 iihalf2 21850 . . . . . . . . 9  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  x
)  -  1 )  e.  ( 0 [,] 1 ) )
4038, 39syl 17 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  ( ( 2  x.  x )  - 
1 )  e.  ( 0 [,] 1 ) )
4137, 40eqeltrd 2508 . . . . . . 7  |-  ( ( x  e.  ( 0 [,] 1 )  /\  -.  x  <_  ( 1  /  2 ) )  ->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  e.  ( 0 [,] 1
) )
4241ex 435 . . . . . 6  |-  ( x  e.  ( 0 [,] 1 )  ->  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) )  e.  ( 0 [,] 1 ) ) )
43 iftrue 3912 . . . . . . 7  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  0 )
4443, 8syl6eqel 2516 . . . . . 6  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  e.  ( 0 [,] 1 ) )
4542, 44pm2.61d2 163 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  e.  ( 0 [,] 1 ) )
4645adantl 467 . . . 4  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  x  e.  ( 0 [,] 1
) )  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  e.  ( 0 [,] 1 ) )
47 eqid 2420 . . . . 5  |-  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )
4847a1i 11 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) ) )
497feqmptd 5925 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  F  =  ( y  e.  ( 0 [,] 1
)  |->  ( F `  y ) ) )
50 fveq2 5872 . . . . 5  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  -> 
( F `  y
)  =  ( F `
 if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) )
51 fvif 5883 . . . . 5  |-  ( F `
 if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) )  =  if ( x  <_  ( 1  / 
2 ) ,  ( F `  0 ) ,  ( F `  ( ( 2  x.  x )  -  1 ) ) )
5250, 51syl6eq 2477 . . . 4  |-  ( y  =  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) )  -> 
( F `  y
)  =  if ( x  <_  ( 1  /  2 ) ,  ( F `  0
) ,  ( F `
 ( ( 2  x.  x )  - 
1 ) ) ) )
5346, 48, 49, 52fmptco 6062 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F  o.  (
x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( F `
 0 ) ,  ( F `  (
( 2  x.  x
)  -  1 ) ) ) ) )
5426, 35, 533eqtr4d 2471 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F )  =  ( F  o.  ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) ) )
55 iitopon 21800 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
5655a1i 11 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  ->  II  e.  (TopOn `  (
0 [,] 1 ) ) )
5756cnmptid 20600 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( II  Cn  II ) )
588a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
0  e.  ( 0 [,] 1 ) )
5956, 56, 58cnmptc 20601 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( II  Cn  II ) )
60 eqid 2420 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
61 eqid 2420 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
62 eqid 2420 . . . . 5  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
63 dfii2 21803 . . . . 5  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
64 0re 9632 . . . . . 6  |-  0  e.  RR
6564a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
0  e.  RR )
66 1re 9631 . . . . . 6  |-  1  e.  RR
6766a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
1  e.  RR )
68 halfre 10817 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
69 halfgt0 10819 . . . . . . . 8  |-  0  <  ( 1  /  2
)
7064, 68, 69ltleii 9746 . . . . . . 7  |-  0  <_  ( 1  /  2
)
71 halflt1 10820 . . . . . . . 8  |-  ( 1  /  2 )  <  1
7268, 66, 71ltleii 9746 . . . . . . 7  |-  ( 1  /  2 )  <_ 
1
7364, 66elicc2i 11689 . . . . . . 7  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
7468, 70, 72, 73mpbir3an 1187 . . . . . 6  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
7574a1i 11 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( 1  /  2
)  e.  ( 0 [,] 1 ) )
76 simprl 762 . . . . . . . . 9  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
y  =  ( 1  /  2 ) )
7776oveq2d 6312 . . . . . . . 8  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  ( 2  x.  ( 1  / 
2 ) ) )
78 2cn 10669 . . . . . . . . 9  |-  2  e.  CC
79 2ne0 10691 . . . . . . . . 9  |-  2  =/=  0
8078, 79recidi 10327 . . . . . . . 8  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
8177, 80syl6eq 2477 . . . . . . 7  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  y
)  =  1 )
8281oveq1d 6311 . . . . . 6  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  y )  -  1 )  =  ( 1  -  1 ) )
83 1m1e0 10667 . . . . . 6  |-  ( 1  -  1 )  =  0
8482, 83syl6req 2478 . . . . 5  |-  ( ( ( F  e.  ( II  Cn  J )  /\  ( F ` 
0 )  =  Y )  /\  ( y  =  ( 1  / 
2 )  /\  z  e.  ( 0 [,] 1
) ) )  -> 
0  =  ( ( 2  x.  y )  -  1 ) )
85 retopon 21688 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
86 iccssre 11705 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
8764, 68, 86mp2an 676 . . . . . . . 8  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
88 resttopon 20101 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
8985, 87, 88mp2an 676 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
9089a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
9190, 56, 56, 58cnmpt2c 20609 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( 0 [,] ( 1  /  2 ) ) ,  z  e.  ( 0 [,] 1 ) 
|->  0 )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
92 iccssre 11705 . . . . . . . . 9  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
9368, 66, 92mp2an 676 . . . . . . . 8  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
94 resttopon 20101 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
9585, 93, 94mp2an 676 . . . . . . 7  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
9695a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
9796, 56cnmpt1st 20607 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
9862iihalf2cn 21851 . . . . . . 7  |-  ( x  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
9998a1i 11 . . . . . 6  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
100 oveq2 6304 . . . . . . 7  |-  ( x  =  y  ->  (
2  x.  x )  =  ( 2  x.  y ) )
101100oveq1d 6311 . . . . . 6  |-  ( x  =  y  ->  (
( 2  x.  x
)  -  1 )  =  ( ( 2  x.  y )  - 
1 ) )
10296, 56, 97, 96, 99, 101cnmpt21 20610 . . . . 5  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( ( 1  /  2
) [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  ( ( 2  x.  y )  -  1 ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
10360, 61, 62, 63, 65, 67, 75, 56, 84, 91, 102cnmpt2pc 21845 . . . 4  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( y  e.  ( 0 [,] 1 ) ,  z  e.  ( 0 [,] 1 ) 
|->  if ( y  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  y )  -  1 ) ) )  e.  ( ( II  tX  II )  Cn  II ) )
104 breq1 4420 . . . . . 6  |-  ( y  =  x  ->  (
y  <_  ( 1  /  2 )  <->  x  <_  ( 1  /  2 ) ) )
105 oveq2 6304 . . . . . . 7  |-  ( y  =  x  ->  (
2  x.  y )  =  ( 2  x.  x ) )
106105oveq1d 6311 . . . . . 6  |-  ( y  =  x  ->  (
( 2  x.  y
)  -  1 )  =  ( ( 2  x.  x )  - 
1 ) )
107104, 106ifbieq2d 3931 . . . . 5  |-  ( y  =  x  ->  if ( y  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  y
)  -  1 ) )  =  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )
108107adantr 466 . . . 4  |-  ( ( y  =  x  /\  z  =  0 )  ->  if ( y  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  y )  - 
1 ) )  =  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )
10956, 57, 59, 56, 56, 103, 108cnmpt12 20606 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) )  e.  ( II  Cn  II ) )
110 id 23 . . . . . . 7  |-  ( x  =  0  ->  x  =  0 )
111110, 70syl6eqbr 4454 . . . . . 6  |-  ( x  =  0  ->  x  <_  ( 1  /  2
) )
112111, 43syl 17 . . . . 5  |-  ( x  =  0  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  0 )
113 c0ex 9626 . . . . 5  |-  0  e.  _V
114112, 47, 113fvmpt 5955 . . . 4  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) ) ` 
0 )  =  0 )
1158, 114mp1i 13 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) `
 0 )  =  0 )
116 1elunit 11738 . . . 4  |-  1  e.  ( 0 [,] 1
)
11768, 66ltnlei 9744 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
11871, 117mpbi 211 . . . . . . . 8  |-  -.  1  <_  ( 1  /  2
)
119 breq1 4420 . . . . . . . 8  |-  ( x  =  1  ->  (
x  <_  ( 1  /  2 )  <->  1  <_  ( 1  /  2 ) ) )
120118, 119mtbiri 304 . . . . . . 7  |-  ( x  =  1  ->  -.  x  <_  ( 1  / 
2 ) )
121120, 36syl 17 . . . . . 6  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  ( ( 2  x.  x )  - 
1 ) )
122 oveq2 6304 . . . . . . . . 9  |-  ( x  =  1  ->  (
2  x.  x )  =  ( 2  x.  1 ) )
123 2t1e2 10747 . . . . . . . . 9  |-  ( 2  x.  1 )  =  2
124122, 123syl6eq 2477 . . . . . . . 8  |-  ( x  =  1  ->  (
2  x.  x )  =  2 )
125124oveq1d 6311 . . . . . . 7  |-  ( x  =  1  ->  (
( 2  x.  x
)  -  1 )  =  ( 2  -  1 ) )
126 2m1e1 10713 . . . . . . 7  |-  ( 2  -  1 )  =  1
127125, 126syl6eq 2477 . . . . . 6  |-  ( x  =  1  ->  (
( 2  x.  x
)  -  1 )  =  1 )
128121, 127eqtrd 2461 . . . . 5  |-  ( x  =  1  ->  if ( x  <_  ( 1  /  2 ) ,  0 ,  ( ( 2  x.  x )  -  1 ) )  =  1 )
129 1ex 9627 . . . . 5  |-  1  e.  _V
130128, 47, 129fvmpt 5955 . . . 4  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  0 ,  ( ( 2  x.  x )  -  1 ) ) ) ` 
1 )  =  1 )
131116, 130mp1i 13 . . 3  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  0 ,  ( ( 2  x.  x )  - 
1 ) ) ) `
 1 )  =  1 )
13234, 109, 115, 131reparpht 21915 . 2  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( F  o.  (
x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  0 ,  ( ( 2  x.  x
)  -  1 ) ) ) ) ( 
~=ph  `  J ) F )
13354, 132eqbrtrd 4437 1  |-  ( ( F  e.  ( II 
Cn  J )  /\  ( F `  0 )  =  Y )  -> 
( P ( *p
`  J ) F ) (  ~=ph  `  J
) F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867    C_ wss 3433   ifcif 3906   {csn 3993   U.cuni 4213   class class class wbr 4417    |-> cmpt 4475    X. cxp 4843   ran crn 4846    o. ccom 4849   -->wf 5588   ` cfv 5592  (class class class)co 6296   RRcr 9527   0cc0 9528   1c1 9529    x. cmul 9533    < clt 9664    <_ cle 9665    - cmin 9849    / cdiv 10258   2c2 10648   (,)cioo 11624   [,]cicc 11627   ↾t crest 15271   topGenctg 15288   Topctop 19841  TopOnctopon 19842    Cn ccn 20164   IIcii 21796    ~=ph cphtpc 21886   *pcpco 21917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-inf2 8137  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-pre-sup 9606  ax-addf 9607  ax-mulf 9608
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-se 4805  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-isom 5601  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6536  df-om 6698  df-1st 6798  df-2nd 6799  df-supp 6917  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-2o 7182  df-oadd 7185  df-er 7362  df-map 7473  df-ixp 7522  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-fsupp 7881  df-fi 7922  df-sup 7953  df-oi 8016  df-card 8363  df-cda 8587  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-4 10659  df-5 10660  df-6 10661  df-7 10662  df-8 10663  df-9 10664  df-10 10665  df-n0 10859  df-z 10927  df-dec 11041  df-uz 11149  df-q 11254  df-rp 11292  df-xneg 11398  df-xadd 11399  df-xmul 11400  df-ioo 11628  df-icc 11631  df-fz 11772  df-fzo 11903  df-seq 12200  df-exp 12259  df-hash 12502  df-cj 13130  df-re 13131  df-im 13132  df-sqrt 13266  df-abs 13267  df-struct 15075  df-ndx 15076  df-slot 15077  df-base 15078  df-sets 15079  df-ress 15080  df-plusg 15155  df-mulr 15156  df-starv 15157  df-sca 15158  df-vsca 15159  df-ip 15160  df-tset 15161  df-ple 15162  df-ds 15164  df-unif 15165  df-hom 15166  df-cco 15167  df-rest 15273  df-topn 15274  df-0g 15292  df-gsum 15293  df-topgen 15294  df-pt 15295  df-prds 15298  df-xrs 15352  df-qtop 15357  df-imas 15358  df-xps 15360  df-mre 15436  df-mrc 15437  df-acs 15439  df-mgm 16432  df-sgrp 16471  df-mnd 16481  df-submnd 16527  df-mulg 16620  df-cntz 16915  df-cmn 17360  df-psmet 18890  df-xmet 18891  df-met 18892  df-bl 18893  df-mopn 18894  df-cnfld 18899  df-top 19845  df-bases 19846  df-topon 19847  df-topsp 19848  df-cld 19958  df-cn 20167  df-cnp 20168  df-tx 20501  df-hmeo 20694  df-xms 21259  df-ms 21260  df-tms 21261  df-ii 21798  df-htpy 21887  df-phtpy 21888  df-phtpc 21909  df-pco 21922
This theorem is referenced by:  pcophtb  21946  pi1grplem  21966  pi1xfr  21972  pi1xfrcnvlem  21973
  Copyright terms: Public domain W3C validator