MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcohtpylem Unicode version

Theorem pcohtpylem 18997
Description: Lemma for pcohtpy 18998. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
pcohtpy.4  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
pcohtpy.5  |-  ( ph  ->  F (  ~=ph  `  J
) H )
pcohtpy.6  |-  ( ph  ->  G (  ~=ph  `  J
) K )
pcohtpylem.7  |-  P  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( ( 2  x.  x ) M y ) ,  ( ( ( 2  x.  x )  - 
1 ) N y ) ) )
pcohtpylem.8  |-  ( ph  ->  M  e.  ( F ( PHtpy `  J ) H ) )
pcohtpylem.9  |-  ( ph  ->  N  e.  ( G ( PHtpy `  J ) K ) )
Assertion
Ref Expression
pcohtpylem  |-  ( ph  ->  P  e.  ( ( F ( *p `  J ) G ) ( PHtpy `  J )
( H ( *p
`  J ) K ) ) )
Distinct variable groups:    x, y, F    x, M, y    x, N, y    ph, x, y   
x, G, y    x, H, y    x, J, y   
x, K, y
Allowed substitution hints:    P( x, y)

Proof of Theorem pcohtpylem
Dummy variables  s 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcohtpy.5 . . . . 5  |-  ( ph  ->  F (  ~=ph  `  J
) H )
2 isphtpc 18972 . . . . 5  |-  ( F (  ~=ph  `  J ) H  <->  ( F  e.  ( II  Cn  J
)  /\  H  e.  ( II  Cn  J
)  /\  ( F
( PHtpy `  J ) H )  =/=  (/) ) )
31, 2sylib 189 . . . 4  |-  ( ph  ->  ( F  e.  ( II  Cn  J )  /\  H  e.  ( II  Cn  J )  /\  ( F (
PHtpy `  J ) H )  =/=  (/) ) )
43simp1d 969 . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
5 pcohtpy.6 . . . . 5  |-  ( ph  ->  G (  ~=ph  `  J
) K )
6 isphtpc 18972 . . . . 5  |-  ( G (  ~=ph  `  J ) K  <->  ( G  e.  ( II  Cn  J
)  /\  K  e.  ( II  Cn  J
)  /\  ( G
( PHtpy `  J ) K )  =/=  (/) ) )
75, 6sylib 189 . . . 4  |-  ( ph  ->  ( G  e.  ( II  Cn  J )  /\  K  e.  ( II  Cn  J )  /\  ( G (
PHtpy `  J ) K )  =/=  (/) ) )
87simp1d 969 . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  J ) )
9 pcohtpy.4 . . 3  |-  ( ph  ->  ( F `  1
)  =  ( G `
 0 ) )
104, 8, 9pcocn 18995 . 2  |-  ( ph  ->  ( F ( *p
`  J ) G )  e.  ( II 
Cn  J ) )
113simp2d 970 . . 3  |-  ( ph  ->  H  e.  ( II 
Cn  J ) )
127simp2d 970 . . 3  |-  ( ph  ->  K  e.  ( II 
Cn  J ) )
13 pcohtpylem.8 . . . . . 6  |-  ( ph  ->  M  e.  ( F ( PHtpy `  J ) H ) )
144, 11, 13phtpy01 18963 . . . . 5  |-  ( ph  ->  ( ( F ` 
0 )  =  ( H `  0 )  /\  ( F ` 
1 )  =  ( H `  1 ) ) )
1514simprd 450 . . . 4  |-  ( ph  ->  ( F `  1
)  =  ( H `
 1 ) )
16 pcohtpylem.9 . . . . . 6  |-  ( ph  ->  N  e.  ( G ( PHtpy `  J ) K ) )
178, 12, 16phtpy01 18963 . . . . 5  |-  ( ph  ->  ( ( G ` 
0 )  =  ( K `  0 )  /\  ( G ` 
1 )  =  ( K `  1 ) ) )
1817simpld 446 . . . 4  |-  ( ph  ->  ( G `  0
)  =  ( K `
 0 ) )
199, 15, 183eqtr3d 2444 . . 3  |-  ( ph  ->  ( H `  1
)  =  ( K `
 0 ) )
2011, 12, 19pcocn 18995 . 2  |-  ( ph  ->  ( H ( *p
`  J ) K )  e.  ( II 
Cn  J ) )
21 pcohtpylem.7 . . 3  |-  P  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( ( 2  x.  x ) M y ) ,  ( ( ( 2  x.  x )  - 
1 ) N y ) ) )
22 eqid 2404 . . . 4  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
23 eqid 2404 . . . 4  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  =  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )
24 eqid 2404 . . . 4  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  =  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )
25 dfii2 18865 . . . 4  |-  II  =  ( ( topGen `  ran  (,) )t  ( 0 [,] 1
) )
26 0re 9047 . . . . 5  |-  0  e.  RR
2726a1i 11 . . . 4  |-  ( ph  ->  0  e.  RR )
28 1re 9046 . . . . 5  |-  1  e.  RR
2928a1i 11 . . . 4  |-  ( ph  ->  1  e.  RR )
3028rehalfcli 10172 . . . . . 6  |-  ( 1  /  2 )  e.  RR
31 halfgt0 10144 . . . . . . 7  |-  0  <  ( 1  /  2
)
3226, 30, 31ltleii 9152 . . . . . 6  |-  0  <_  ( 1  /  2
)
33 halflt1 10145 . . . . . . 7  |-  ( 1  /  2 )  <  1
3430, 28, 33ltleii 9152 . . . . . 6  |-  ( 1  /  2 )  <_ 
1
3526, 28elicc2i 10932 . . . . . 6  |-  ( ( 1  /  2 )  e.  ( 0 [,] 1 )  <->  ( (
1  /  2 )  e.  RR  /\  0  <_  ( 1  /  2
)  /\  ( 1  /  2 )  <_ 
1 ) )
3630, 32, 34, 35mpbir3an 1136 . . . . 5  |-  ( 1  /  2 )  e.  ( 0 [,] 1
)
3736a1i 11 . . . 4  |-  ( ph  ->  ( 1  /  2
)  e.  ( 0 [,] 1 ) )
38 iitopon 18862 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
3938a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
409adantr 452 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( F `  1
)  =  ( G `
 0 ) )
414, 11, 13phtpyi 18962 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 [,] 1
) )  ->  (
( 0 M y )  =  ( F `
 0 )  /\  ( 1 M y )  =  ( F `
 1 ) ) )
4241simprd 450 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 [,] 1
) )  ->  (
1 M y )  =  ( F ` 
1 ) )
4342adantrl 697 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 1 M y )  =  ( F `
 1 ) )
448, 12, 16phtpyi 18962 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( 0 [,] 1
) )  ->  (
( 0 N y )  =  ( G `
 0 )  /\  ( 1 N y )  =  ( G `
 1 ) ) )
4544simpld 446 . . . . . . 7  |-  ( (
ph  /\  y  e.  ( 0 [,] 1
) )  ->  (
0 N y )  =  ( G ` 
0 ) )
4645adantrl 697 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 0 N y )  =  ( G `
 0 ) )
4740, 43, 463eqtr4d 2446 . . . . 5  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 1 M y )  =  ( 0 N y ) )
48 simprl 733 . . . . . . . 8  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  ->  x  =  ( 1  /  2 ) )
4948oveq2d 6056 . . . . . . 7  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  x
)  =  ( 2  x.  ( 1  / 
2 ) ) )
50 2cn 10026 . . . . . . . 8  |-  2  e.  CC
51 2ne0 10039 . . . . . . . 8  |-  2  =/=  0
5250, 51recidi 9701 . . . . . . 7  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
5349, 52syl6eq 2452 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( 2  x.  x
)  =  1 )
5453oveq1d 6055 . . . . 5  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  x ) M y )  =  ( 1 M y ) )
5553oveq1d 6055 . . . . . . 7  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  x )  -  1 )  =  ( 1  -  1 ) )
56 1m1e0 10024 . . . . . . 7  |-  ( 1  -  1 )  =  0
5755, 56syl6eq 2452 . . . . . 6  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  x )  -  1 )  =  0 )
5857oveq1d 6055 . . . . 5  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( ( 2  x.  x )  - 
1 ) N y )  =  ( 0 N y ) )
5947, 54, 583eqtr4d 2446 . . . 4  |-  ( (
ph  /\  ( x  =  ( 1  / 
2 )  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( 2  x.  x ) M y )  =  ( ( ( 2  x.  x
)  -  1 ) N y ) )
60 retopon 18750 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  e.  (TopOn `  RR )
61 iccssre 10948 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( 0 [,] ( 1  /  2
) )  C_  RR )
6226, 30, 61mp2an 654 . . . . . . 7  |-  ( 0 [,] ( 1  / 
2 ) )  C_  RR
63 resttopon 17179 . . . . . . 7  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( 0 [,] (
1  /  2 ) )  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6460, 62, 63mp2an 654 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) )
6564a1i 11 . . . . 5  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  e.  (TopOn `  ( 0 [,] (
1  /  2 ) ) ) )
6665, 39cnmpt1st 17653 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) ) ) )
6723iihalf1cn 18910 . . . . . . 7  |-  ( z  e.  ( 0 [,] ( 1  /  2
) )  |->  ( 2  x.  z ) )  e.  ( ( (
topGen `  ran  (,) )t  (
0 [,] ( 1  /  2 ) ) )  Cn  II )
6867a1i 11 . . . . . 6  |-  ( ph  ->  ( z  e.  ( 0 [,] ( 1  /  2 ) ) 
|->  ( 2  x.  z
) )  e.  ( ( ( topGen `  ran  (,) )t  ( 0 [,] (
1  /  2 ) ) )  Cn  II ) )
69 oveq2 6048 . . . . . 6  |-  ( z  =  x  ->  (
2  x.  z )  =  ( 2  x.  x ) )
7065, 39, 66, 65, 68, 69cnmpt21 17656 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 2  x.  x
) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
7165, 39cnmpt2nd 17654 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  II ) )
724, 11phtpycn 18961 . . . . . 6  |-  ( ph  ->  ( F ( PHtpy `  J ) H ) 
C_  ( ( II 
tX  II )  Cn  J ) )
7372, 13sseldd 3309 . . . . 5  |-  ( ph  ->  M  e.  ( ( II  tX  II )  Cn  J ) )
7465, 39, 70, 71, 73cnmpt22f 17660 . . . 4  |-  ( ph  ->  ( x  e.  ( 0 [,] ( 1  /  2 ) ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( 2  x.  x ) M y ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( 0 [,] ( 1  /  2
) ) )  tX  II )  Cn  J
) )
75 iccssre 10948 . . . . . . . 8  |-  ( ( ( 1  /  2
)  e.  RR  /\  1  e.  RR )  ->  ( ( 1  / 
2 ) [,] 1
)  C_  RR )
7630, 28, 75mp2an 654 . . . . . . 7  |-  ( ( 1  /  2 ) [,] 1 )  C_  RR
77 resttopon 17179 . . . . . . 7  |-  ( ( ( topGen `  ran  (,) )  e.  (TopOn `  RR )  /\  ( ( 1  / 
2 ) [,] 1
)  C_  RR )  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
7860, 76, 77mp2an 654 . . . . . 6  |-  ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) )
7978a1i 11 . . . . 5  |-  ( ph  ->  ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  e.  (TopOn `  ( ( 1  / 
2 ) [,] 1
) ) )
8079, 39cnmpt1st 17653 . . . . . 6  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  (
( topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) ) ) )
8124iihalf2cn 18912 . . . . . . 7  |-  ( z  e.  ( ( 1  /  2 ) [,] 1 )  |->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( (
topGen `  ran  (,) )t  (
( 1  /  2
) [,] 1 ) )  Cn  II )
8281a1i 11 . . . . . 6  |-  ( ph  ->  ( z  e.  ( ( 1  /  2
) [,] 1 ) 
|->  ( ( 2  x.  z )  -  1 ) )  e.  ( ( ( topGen `  ran  (,) )t  ( ( 1  / 
2 ) [,] 1
) )  Cn  II ) )
8369oveq1d 6055 . . . . . 6  |-  ( z  =  x  ->  (
( 2  x.  z
)  -  1 )  =  ( ( 2  x.  x )  - 
1 ) )
8479, 39, 80, 79, 82, 83cnmpt21 17656 . . . . 5  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( 2  x.  x )  -  1 ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
8579, 39cnmpt2nd 17654 . . . . 5  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  II ) )
868, 12phtpycn 18961 . . . . . 6  |-  ( ph  ->  ( G ( PHtpy `  J ) K ) 
C_  ( ( II 
tX  II )  Cn  J ) )
8786, 16sseldd 3309 . . . . 5  |-  ( ph  ->  N  e.  ( ( II  tX  II )  Cn  J ) )
8879, 39, 84, 85, 87cnmpt22f 17660 . . . 4  |-  ( ph  ->  ( x  e.  ( ( 1  /  2
) [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 2  x.  x )  - 
1 ) N y ) )  e.  ( ( ( ( topGen ` 
ran  (,) )t  ( ( 1  /  2 ) [,] 1 ) )  tX  II )  Cn  J
) )
8922, 23, 24, 25, 27, 29, 37, 39, 59, 74, 88cnmpt2pc 18906 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( ( 2  x.  x ) M y ) ,  ( ( ( 2  x.  x )  - 
1 ) N y ) ) )  e.  ( ( II  tX  II )  Cn  J
) )
9021, 89syl5eqel 2488 . 2  |-  ( ph  ->  P  e.  ( ( II  tX  II )  Cn  J ) )
91 simpll 731 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  ph )
92 elii1 18913 . . . . . . . . 9  |-  ( s  e.  ( 0 [,] ( 1  /  2
) )  <->  ( s  e.  ( 0 [,] 1
)  /\  s  <_  ( 1  /  2 ) ) )
93 iihalf1 18909 . . . . . . . . 9  |-  ( s  e.  ( 0 [,] ( 1  /  2
) )  ->  (
2  x.  s )  e.  ( 0 [,] 1 ) )
9492, 93sylbir 205 . . . . . . . 8  |-  ( ( s  e.  ( 0 [,] 1 )  /\  s  <_  ( 1  / 
2 ) )  -> 
( 2  x.  s
)  e.  ( 0 [,] 1 ) )
9594adantll 695 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
2  x.  s )  e.  ( 0 [,] 1 ) )
964, 11phtpyhtpy 18960 . . . . . . . . 9  |-  ( ph  ->  ( F ( PHtpy `  J ) H ) 
C_  ( F ( II Htpy  J ) H ) )
9796, 13sseldd 3309 . . . . . . . 8  |-  ( ph  ->  M  e.  ( F ( II Htpy  J ) H ) )
9839, 4, 11, 97htpyi 18952 . . . . . . 7  |-  ( (
ph  /\  ( 2  x.  s )  e.  ( 0 [,] 1
) )  ->  (
( ( 2  x.  s ) M 0 )  =  ( F `
 ( 2  x.  s ) )  /\  ( ( 2  x.  s ) M 1 )  =  ( H `
 ( 2  x.  s ) ) ) )
9991, 95, 98syl2anc 643 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
( ( 2  x.  s ) M 0 )  =  ( F `
 ( 2  x.  s ) )  /\  ( ( 2  x.  s ) M 1 )  =  ( H `
 ( 2  x.  s ) ) ) )
10099simpld 446 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
( 2  x.  s
) M 0 )  =  ( F `  ( 2  x.  s
) ) )
101 iftrue 3705 . . . . . 6  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  ( ( 2  x.  s ) M 0 ) )
102101adantl 453 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  ( ( 2  x.  s ) M 0 ) )
103 iftrue 3705 . . . . . 6  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  s
) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) )  =  ( F `
 ( 2  x.  s ) ) )
104103adantl 453 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  s
) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) )  =  ( F `
 ( 2  x.  s ) ) )
105100, 102, 1043eqtr4d 2446 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  s ) ) ,  ( G `
 ( ( 2  x.  s )  - 
1 ) ) ) )
106 simpll 731 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  ph )
107 elii2 18914 . . . . . . . . 9  |-  ( ( s  e.  ( 0 [,] 1 )  /\  -.  s  <_  ( 1  /  2 ) )  ->  s  e.  ( ( 1  /  2
) [,] 1 ) )
108107adantll 695 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
s  e.  ( ( 1  /  2 ) [,] 1 ) )
109 iihalf2 18911 . . . . . . . 8  |-  ( s  e.  ( ( 1  /  2 ) [,] 1 )  ->  (
( 2  x.  s
)  -  1 )  e.  ( 0 [,] 1 ) )
110108, 109syl 16 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( 2  x.  s )  -  1 )  e.  ( 0 [,] 1 ) )
1118, 12phtpyhtpy 18960 . . . . . . . . 9  |-  ( ph  ->  ( G ( PHtpy `  J ) K ) 
C_  ( G ( II Htpy  J ) K ) )
112111, 16sseldd 3309 . . . . . . . 8  |-  ( ph  ->  N  e.  ( G ( II Htpy  J ) K ) )
11339, 8, 12, 112htpyi 18952 . . . . . . 7  |-  ( (
ph  /\  ( (
2  x.  s )  -  1 )  e.  ( 0 [,] 1
) )  ->  (
( ( ( 2  x.  s )  - 
1 ) N 0 )  =  ( G `
 ( ( 2  x.  s )  - 
1 ) )  /\  ( ( ( 2  x.  s )  - 
1 ) N 1 )  =  ( K `
 ( ( 2  x.  s )  - 
1 ) ) ) )
114106, 110, 113syl2anc 643 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( ( ( 2  x.  s )  -  1 ) N 0 )  =  ( G `  ( ( 2  x.  s )  -  1 ) )  /\  ( ( ( 2  x.  s )  -  1 ) N 1 )  =  ( K `  ( ( 2  x.  s )  -  1 ) ) ) )
115114simpld 446 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( ( 2  x.  s )  - 
1 ) N 0 )  =  ( G `
 ( ( 2  x.  s )  - 
1 ) ) )
116 iffalse 3706 . . . . . 6  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  ( ( ( 2  x.  s
)  -  1 ) N 0 ) )
117116adantl 453 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  ( ( ( 2  x.  s
)  -  1 ) N 0 ) )
118 iffalse 3706 . . . . . 6  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  s
) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) )  =  ( G `
 ( ( 2  x.  s )  - 
1 ) ) )
119118adantl 453 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( F `  ( 2  x.  s
) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) )  =  ( G `
 ( ( 2  x.  s )  - 
1 ) ) )
120115, 117, 1193eqtr4d 2446 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  s ) ) ,  ( G `
 ( ( 2  x.  s )  - 
1 ) ) ) )
121105, 120pm2.61dan 767 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( F `  (
2  x.  s ) ) ,  ( G `
 ( ( 2  x.  s )  - 
1 ) ) ) )
122 simpr 448 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
123 0elunit 10971 . . . 4  |-  0  e.  ( 0 [,] 1
)
124 simpl 444 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  x  =  s )
125124breq1d 4182 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( x  <_ 
( 1  /  2
)  <->  s  <_  (
1  /  2 ) ) )
126124oveq2d 6056 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 2  x.  x )  =  ( 2  x.  s ) )
127 simpr 448 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  =  0 )
128126, 127oveq12d 6058 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( 2  x.  x ) M y )  =  ( ( 2  x.  s
) M 0 ) )
129126oveq1d 6055 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( 2  x.  x )  - 
1 )  =  ( ( 2  x.  s
)  -  1 ) )
130129, 127oveq12d 6058 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( ( 2  x.  x )  -  1 ) N y )  =  ( ( ( 2  x.  s )  -  1 ) N 0 ) )
131125, 128, 130ifbieq12d 3721 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  if ( s  <_ 
( 1  /  2
) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  - 
1 ) N 0 ) ) )
132 ovex 6065 . . . . . 6  |-  ( ( 2  x.  s ) M 0 )  e. 
_V
133 ovex 6065 . . . . . 6  |-  ( ( ( 2  x.  s
)  -  1 ) N 0 )  e. 
_V
134132, 133ifex 3757 . . . . 5  |-  if ( s  <_  ( 1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s
)  -  1 ) N 0 ) )  e.  _V
135131, 21, 134ovmpt2a 6163 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s P 0 )  =  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) ) )
136122, 123, 135sylancl 644 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s P 0 )  =  if ( s  <_  ( 1  / 
2 ) ,  ( ( 2  x.  s
) M 0 ) ,  ( ( ( 2  x.  s )  -  1 ) N 0 ) ) )
1374, 8pcovalg 18990 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  s )  =  if ( s  <_  ( 1  / 
2 ) ,  ( F `  ( 2  x.  s ) ) ,  ( G `  ( ( 2  x.  s )  -  1 ) ) ) )
138121, 136, 1373eqtr4d 2446 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s P 0 )  =  ( ( F ( *p `  J
) G ) `  s ) )
13999simprd 450 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  (
( 2  x.  s
) M 1 )  =  ( H `  ( 2  x.  s
) ) )
140 iftrue 3705 . . . . . 6  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  ( ( 2  x.  s ) M 1 ) )
141140adantl 453 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  ( ( 2  x.  s ) M 1 ) )
142 iftrue 3705 . . . . . 6  |-  ( s  <_  ( 1  / 
2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( H `  ( 2  x.  s
) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) )  =  ( H `
 ( 2  x.  s ) ) )
143142adantl 453 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( H `  ( 2  x.  s
) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) )  =  ( H `
 ( 2  x.  s ) ) )
144139, 141, 1433eqtr4d 2446 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  s  <_  ( 1  /  2
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( H `  (
2  x.  s ) ) ,  ( K `
 ( ( 2  x.  s )  - 
1 ) ) ) )
145114simprd 450 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  -> 
( ( ( 2  x.  s )  - 
1 ) N 1 )  =  ( K `
 ( ( 2  x.  s )  - 
1 ) ) )
146 iffalse 3706 . . . . . 6  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  ( ( ( 2  x.  s
)  -  1 ) N 1 ) )
147146adantl 453 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  ( ( ( 2  x.  s
)  -  1 ) N 1 ) )
148 iffalse 3706 . . . . . 6  |-  ( -.  s  <_  ( 1  /  2 )  ->  if ( s  <_  (
1  /  2 ) ,  ( H `  ( 2  x.  s
) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) )  =  ( K `
 ( ( 2  x.  s )  - 
1 ) ) )
149148adantl 453 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( H `  ( 2  x.  s
) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) )  =  ( K `
 ( ( 2  x.  s )  - 
1 ) ) )
150145, 147, 1493eqtr4d 2446 . . . 4  |-  ( ( ( ph  /\  s  e.  ( 0 [,] 1
) )  /\  -.  s  <_  ( 1  / 
2 ) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( H `  (
2  x.  s ) ) ,  ( K `
 ( ( 2  x.  s )  - 
1 ) ) ) )
151144, 150pm2.61dan 767 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) )  =  if ( s  <_  ( 1  /  2 ) ,  ( H `  (
2  x.  s ) ) ,  ( K `
 ( ( 2  x.  s )  - 
1 ) ) ) )
152 1elunit 10972 . . . 4  |-  1  e.  ( 0 [,] 1
)
153 simpl 444 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  x  =  s )
154153breq1d 4182 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( x  <_ 
( 1  /  2
)  <->  s  <_  (
1  /  2 ) ) )
155153oveq2d 6056 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 2  x.  x )  =  ( 2  x.  s ) )
156 simpr 448 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  y  =  1 )
157155, 156oveq12d 6058 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  x ) M y )  =  ( ( 2  x.  s
) M 1 ) )
158155oveq1d 6055 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 2  x.  x )  - 
1 )  =  ( ( 2  x.  s
)  -  1 ) )
159158, 156oveq12d 6058 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( ( 2  x.  x )  -  1 ) N y )  =  ( ( ( 2  x.  s )  -  1 ) N 1 ) )
160154, 157, 159ifbieq12d 3721 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  if ( s  <_ 
( 1  /  2
) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  - 
1 ) N 1 ) ) )
161 ovex 6065 . . . . . 6  |-  ( ( 2  x.  s ) M 1 )  e. 
_V
162 ovex 6065 . . . . . 6  |-  ( ( ( 2  x.  s
)  -  1 ) N 1 )  e. 
_V
163161, 162ifex 3757 . . . . 5  |-  if ( s  <_  ( 1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s
)  -  1 ) N 1 ) )  e.  _V
164160, 21, 163ovmpt2a 6163 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s P 1 )  =  if ( s  <_  (
1  /  2 ) ,  ( ( 2  x.  s ) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) ) )
165122, 152, 164sylancl 644 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s P 1 )  =  if ( s  <_  ( 1  / 
2 ) ,  ( ( 2  x.  s
) M 1 ) ,  ( ( ( 2  x.  s )  -  1 ) N 1 ) ) )
16611, 12pcovalg 18990 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( H ( *p
`  J ) K ) `  s )  =  if ( s  <_  ( 1  / 
2 ) ,  ( H `  ( 2  x.  s ) ) ,  ( K `  ( ( 2  x.  s )  -  1 ) ) ) )
167151, 165, 1663eqtr4d 2446 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s P 1 )  =  ( ( H ( *p `  J
) K ) `  s ) )
1684, 11, 13phtpyi 18962 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 M s )  =  ( F `
 0 )  /\  ( 1 M s )  =  ( F `
 1 ) ) )
169168simpld 446 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 M s )  =  ( F ` 
0 ) )
170 simpl 444 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  x  =  0 )
171170, 32syl6eqbr 4209 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  x  <_  (
1  /  2 ) )
172 iftrue 3705 . . . . . . 7  |-  ( x  <_  ( 1  / 
2 )  ->  if ( x  <_  ( 1  /  2 ) ,  ( ( 2  x.  x ) M y ) ,  ( ( ( 2  x.  x
)  -  1 ) N y ) )  =  ( ( 2  x.  x ) M y ) )
173171, 172syl 16 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  ( ( 2  x.  x ) M y ) )
174170oveq2d 6056 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( 2  x.  x )  =  ( 2  x.  0 ) )
17550mul01i 9212 . . . . . . . 8  |-  ( 2  x.  0 )  =  0
176174, 175syl6eq 2452 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( 2  x.  x )  =  0 )
177 simpr 448 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  y  =  s )
178176, 177oveq12d 6058 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  ( ( 2  x.  x ) M y )  =  ( 0 M s ) )
179173, 178eqtrd 2436 . . . . 5  |-  ( ( x  =  0  /\  y  =  s )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  ( 0 M s ) )
180 ovex 6065 . . . . 5  |-  ( 0 M s )  e. 
_V
181179, 21, 180ovmpt2a 6163 . . . 4  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 P s )  =  ( 0 M s ) )
182123, 122, 181sylancr 645 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 P s )  =  ( 0 M s ) )
1834, 8pco0 18992 . . . 4  |-  ( ph  ->  ( ( F ( *p `  J ) G ) `  0
)  =  ( F `
 0 ) )
184183adantr 452 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  0 )  =  ( F ` 
0 ) )
185169, 182, 1843eqtr4d 2446 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 P s )  =  ( ( F ( *p `  J
) G ) ` 
0 ) )
1868, 12, 16phtpyi 18962 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 N s )  =  ( G `
 0 )  /\  ( 1 N s )  =  ( G `
 1 ) ) )
187186simprd 450 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 N s )  =  ( G ` 
1 ) )
18830, 28ltnlei 9150 . . . . . . . . 9  |-  ( ( 1  /  2 )  <  1  <->  -.  1  <_  ( 1  /  2
) )
18933, 188mpbi 200 . . . . . . . 8  |-  -.  1  <_  ( 1  /  2
)
190 simpl 444 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  x  =  1 )
191190breq1d 4182 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( x  <_ 
( 1  /  2
)  <->  1  <_  (
1  /  2 ) ) )
192189, 191mtbiri 295 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  -.  x  <_  ( 1  /  2 ) )
193 iffalse 3706 . . . . . . 7  |-  ( -.  x  <_  ( 1  /  2 )  ->  if ( x  <_  (
1  /  2 ) ,  ( ( 2  x.  x ) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  ( ( ( 2  x.  x
)  -  1 ) N y ) )
194192, 193syl 16 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  ( ( ( 2  x.  x )  - 
1 ) N y ) )
195190oveq2d 6056 . . . . . . . . . 10  |-  ( ( x  =  1  /\  y  =  s )  ->  ( 2  x.  x )  =  ( 2  x.  1 ) )
19650mulid1i 9048 . . . . . . . . . 10  |-  ( 2  x.  1 )  =  2
197195, 196syl6eq 2452 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  ( 2  x.  x )  =  2 )
198197oveq1d 6055 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( 2  x.  x )  - 
1 )  =  ( 2  -  1 ) )
199 2m1e1 10051 . . . . . . . 8  |-  ( 2  -  1 )  =  1
200198, 199syl6eq 2452 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( 2  x.  x )  - 
1 )  =  1 )
201 simpr 448 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  y  =  s )
202200, 201oveq12d 6058 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( ( 2  x.  x )  -  1 ) N y )  =  ( 1 N s ) )
203194, 202eqtrd 2436 . . . . 5  |-  ( ( x  =  1  /\  y  =  s )  ->  if ( x  <_  ( 1  / 
2 ) ,  ( ( 2  x.  x
) M y ) ,  ( ( ( 2  x.  x )  -  1 ) N y ) )  =  ( 1 N s ) )
204 ovex 6065 . . . . 5  |-  ( 1 N s )  e. 
_V
205203, 21, 204ovmpt2a 6163 . . . 4  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 P s )  =  ( 1 N s ) )
206152, 122, 205sylancr 645 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 P s )  =  ( 1 N s ) )
2074, 8pco1 18993 . . . 4  |-  ( ph  ->  ( ( F ( *p `  J ) G ) `  1
)  =  ( G `
 1 ) )
208207adantr 452 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F ( *p
`  J ) G ) `  1 )  =  ( G ` 
1 ) )
209187, 206, 2083eqtr4d 2446 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 P s )  =  ( ( F ( *p `  J
) G ) ` 
1 ) )
21010, 20, 90, 138, 167, 185, 209isphtpy2d 18965 1  |-  ( ph  ->  P  e.  ( ( F ( *p `  J ) G ) ( PHtpy `  J )
( H ( *p
`  J ) K ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567    C_ wss 3280   (/)c0 3588   ifcif 3699   class class class wbr 4172    e. cmpt 4226   ran crn 4838   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951    < clt 9076    <_ cle 9077    - cmin 9247    / cdiv 9633   2c2 10005   (,)cioo 10872   [,]cicc 10875   ↾t crest 13603   topGenctg 13620  TopOnctopon 16914    Cn ccn 17242    tX ctx 17545   IIcii 18858   Htpy chtpy 18945   PHtpycphtpy 18946    ~=ph cphtpc 18947   *pcpco 18978
This theorem is referenced by:  pcohtpy  18998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-icc 10879  df-fz 11000  df-fzo 11091  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-cn 17245  df-cnp 17246  df-tx 17547  df-hmeo 17740  df-xms 18303  df-ms 18304  df-tms 18305  df-ii 18860  df-htpy 18948  df-phtpy 18949  df-phtpc 18970  df-pco 18983
  Copyright terms: Public domain W3C validator