MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcofval Structured version   Visualization version   Unicode version

Theorem pcofval 22119
Description: The value of the path concatenation function on a topological space. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
pcofval  |-  ( *p
`  J )  =  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J ) 
|->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( f `
 ( 2  x.  x ) ) ,  ( g `  (
( 2  x.  x
)  -  1 ) ) ) ) )
Distinct variable group:    f, g, x, J

Proof of Theorem pcofval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 oveq2 6316 . . . 4  |-  ( j  =  J  ->  (
II  Cn  j )  =  ( II  Cn  J ) )
2 eqidd 2472 . . . 4  |-  ( j  =  J  ->  (
x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( f `  ( 2  x.  x
) ) ,  ( g `  ( ( 2  x.  x )  -  1 ) ) ) )  =  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( f `  ( 2  x.  x
) ) ,  ( g `  ( ( 2  x.  x )  -  1 ) ) ) ) )
31, 1, 2mpt2eq123dv 6372 . . 3  |-  ( j  =  J  ->  (
f  e.  ( II 
Cn  j ) ,  g  e.  ( II 
Cn  j )  |->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( f `  ( 2  x.  x
) ) ,  ( g `  ( ( 2  x.  x )  -  1 ) ) ) ) )  =  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J ) 
|->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( f `
 ( 2  x.  x ) ) ,  ( g `  (
( 2  x.  x
)  -  1 ) ) ) ) ) )
4 df-pco 22114 . . 3  |-  *p  =  ( j  e.  Top  |->  ( f  e.  ( II  Cn  j ) ,  g  e.  ( II  Cn  j ) 
|->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( f `
 ( 2  x.  x ) ) ,  ( g `  (
( 2  x.  x
)  -  1 ) ) ) ) ) )
5 ovex 6336 . . . 4  |-  ( II 
Cn  J )  e. 
_V
65, 5mpt2ex 6889 . . 3  |-  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J )  |->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( f `  (
2  x.  x ) ) ,  ( g `
 ( ( 2  x.  x )  - 
1 ) ) ) ) )  e.  _V
73, 4, 6fvmpt 5963 . 2  |-  ( J  e.  Top  ->  ( *p `  J )  =  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J ) 
|->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( f `
 ( 2  x.  x ) ) ,  ( g `  (
( 2  x.  x
)  -  1 ) ) ) ) ) )
84dmmptss 5338 . . . . . 6  |-  dom  *p  C_ 
Top
98sseli 3414 . . . . 5  |-  ( J  e.  dom  *p  ->  J  e.  Top )
109con3i 142 . . . 4  |-  ( -.  J  e.  Top  ->  -.  J  e.  dom  *p )
11 ndmfv 5903 . . . 4  |-  ( -.  J  e.  dom  *p  ->  ( *p `  J
)  =  (/) )
1210, 11syl 17 . . 3  |-  ( -.  J  e.  Top  ->  ( *p `  J )  =  (/) )
13 cntop2 20334 . . . . . . 7  |-  ( f  e.  ( II  Cn  J )  ->  J  e.  Top )
1413con3i 142 . . . . . 6  |-  ( -.  J  e.  Top  ->  -.  f  e.  ( II 
Cn  J ) )
1514eq0rdv 3773 . . . . 5  |-  ( -.  J  e.  Top  ->  ( II  Cn  J )  =  (/) )
16 mpt2eq12 6370 . . . . 5  |-  ( ( ( II  Cn  J
)  =  (/)  /\  (
II  Cn  J )  =  (/) )  ->  (
f  e.  ( II 
Cn  J ) ,  g  e.  ( II 
Cn  J )  |->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( f `  ( 2  x.  x
) ) ,  ( g `  ( ( 2  x.  x )  -  1 ) ) ) ) )  =  ( f  e.  (/) ,  g  e.  (/)  |->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( f `  (
2  x.  x ) ) ,  ( g `
 ( ( 2  x.  x )  - 
1 ) ) ) ) ) )
1715, 15, 16syl2anc 673 . . . 4  |-  ( -.  J  e.  Top  ->  ( f  e.  ( II 
Cn  J ) ,  g  e.  ( II 
Cn  J )  |->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( f `  ( 2  x.  x
) ) ,  ( g `  ( ( 2  x.  x )  -  1 ) ) ) ) )  =  ( f  e.  (/) ,  g  e.  (/)  |->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  ( 1  /  2 ) ,  ( f `  (
2  x.  x ) ) ,  ( g `
 ( ( 2  x.  x )  - 
1 ) ) ) ) ) )
18 mpt20 6380 . . . 4  |-  ( f  e.  (/) ,  g  e.  (/)  |->  ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  ( f `  ( 2  x.  x ) ) ,  ( g `  ( ( 2  x.  x )  -  1 ) ) ) ) )  =  (/)
1917, 18syl6eq 2521 . . 3  |-  ( -.  J  e.  Top  ->  ( f  e.  ( II 
Cn  J ) ,  g  e.  ( II 
Cn  J )  |->  ( x  e.  ( 0 [,] 1 )  |->  if ( x  <_  (
1  /  2 ) ,  ( f `  ( 2  x.  x
) ) ,  ( g `  ( ( 2  x.  x )  -  1 ) ) ) ) )  =  (/) )
2012, 19eqtr4d 2508 . 2  |-  ( -.  J  e.  Top  ->  ( *p `  J )  =  ( f  e.  ( II  Cn  J
) ,  g  e.  ( II  Cn  J
)  |->  ( x  e.  ( 0 [,] 1
)  |->  if ( x  <_  ( 1  / 
2 ) ,  ( f `  ( 2  x.  x ) ) ,  ( g `  ( ( 2  x.  x )  -  1 ) ) ) ) ) )
217, 20pm2.61i 169 1  |-  ( *p
`  J )  =  ( f  e.  ( II  Cn  J ) ,  g  e.  ( II  Cn  J ) 
|->  ( x  e.  ( 0 [,] 1 ) 
|->  if ( x  <_ 
( 1  /  2
) ,  ( f `
 ( 2  x.  x ) ) ,  ( g `  (
( 2  x.  x
)  -  1 ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1452    e. wcel 1904   (/)c0 3722   ifcif 3872   class class class wbr 4395    |-> cmpt 4454   dom cdm 4839   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   0cc0 9557   1c1 9558    x. cmul 9562    <_ cle 9694    - cmin 9880    / cdiv 10291   2c2 10681   [,]cicc 11663   Topctop 19994    Cn ccn 20317   IIcii 21985   *pcpco 22109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-map 7492  df-top 19998  df-topon 20000  df-cn 20320  df-pco 22114
This theorem is referenced by:  pcoval  22120
  Copyright terms: Public domain W3C validator