MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmpt2 Structured version   Visualization version   Unicode version

Theorem pcmpt2 14917
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmpt.4  |-  ( ph  ->  P  e.  Prime )
pcmpt.5  |-  ( n  =  P  ->  A  =  B )
pcmpt2.6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmpt2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Distinct variable groups:    B, n    P, n
Allowed substitution hints:    ph( n)    A( n)    F( n)    M( n)    N( n)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3  |-  ( ph  ->  P  e.  Prime )
2 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
3 pcmpt.2 . . . . . . 7  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
42, 3pcmptcl 14915 . . . . . 6  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
54simprd 470 . . . . 5  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
6 pcmpt.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
7 pcmpt2.6 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
8 eluznn 11252 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
96, 7, 8syl2anc 673 . . . . 5  |-  ( ph  ->  M  e.  NN )
105, 9ffvelrnd 6038 . . . 4  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
1110nnzd 11062 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
1210nnne0d 10676 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )
135, 6ffvelrnd 6038 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
14 pcdiv 14881 . . 3  |-  ( ( P  e.  Prime  /\  (
(  seq 1 (  x.  ,  F ) `  M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) )  =  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  M )
)  -  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  N )
) ) )
151, 11, 12, 13, 14syl121anc 1297 . 2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
16 pcmpt.5 . . . 4  |-  ( n  =  P  ->  A  =  B )
172, 3, 9, 1, 16pcmpt 14916 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M
) )  =  if ( P  <_  M ,  B ,  0 ) )
182, 3, 6, 1, 16pcmpt 14916 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
1917, 18oveq12d 6326 . 2  |-  ( ph  ->  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) ) )
2016eleq1d 2533 . . . . . . . . 9  |-  ( n  =  P  ->  ( A  e.  NN0  <->  B  e.  NN0 ) )
2120rspcv 3132 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( A. n  e.  Prime  A  e. 
NN0  ->  B  e.  NN0 ) )
221, 3, 21sylc 61 . . . . . . 7  |-  ( ph  ->  B  e.  NN0 )
2322nn0cnd 10951 . . . . . 6  |-  ( ph  ->  B  e.  CC )
2423subidd 9993 . . . . 5  |-  ( ph  ->  ( B  -  B
)  =  0 )
2524adantr 472 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( B  -  B )  =  0 )
26 prmnn 14704 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
271, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
2827nnred 10646 . . . . . . . 8  |-  ( ph  ->  P  e.  RR )
2928adantr 472 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  e.  RR )
306nnred 10646 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
3130adantr 472 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  e.  RR )
329nnred 10646 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
3332adantr 472 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  M  e.  RR )
34 simpr 468 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  N )
35 eluzle 11195 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
367, 35syl 17 . . . . . . . 8  |-  ( ph  ->  N  <_  M )
3736adantr 472 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  <_  M )
3829, 31, 33, 34, 37letrd 9809 . . . . . 6  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  M )
3938iftrued 3880 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  B )
40 iftrue 3878 . . . . . 6  |-  ( P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4140adantl 473 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4239, 41oveq12d 6326 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( B  -  B ) )
43 simpr 468 . . . . . 6  |-  ( ( P  <_  M  /\  -.  P  <_  N )  ->  -.  P  <_  N )
4443, 34nsyl3 123 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  -.  ( P  <_  M  /\  -.  P  <_  N ) )
4544iffalsed 3883 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  if (
( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 )  =  0 )
4625, 42, 453eqtr4d 2515 . . 3  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
47 iffalse 3881 . . . . . 6  |-  ( -.  P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  0 )
4847oveq2d 6324 . . . . 5  |-  ( -.  P  <_  N  ->  ( if ( P  <_  M ,  B , 
0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  0 ) )
49 0cn 9653 . . . . . . 7  |-  0  e.  CC
50 ifcl 3914 . . . . . . 7  |-  ( ( B  e.  CC  /\  0  e.  CC )  ->  if ( P  <_  M ,  B , 
0 )  e.  CC )
5123, 49, 50sylancl 675 . . . . . 6  |-  ( ph  ->  if ( P  <_  M ,  B , 
0 )  e.  CC )
5251subid1d 9994 . . . . 5  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  - 
0 )  =  if ( P  <_  M ,  B ,  0 ) )
5348, 52sylan9eqr 2527 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( P  <_  M ,  B ,  0 ) )
54 simpr 468 . . . . . 6  |-  ( (
ph  /\  -.  P  <_  N )  ->  -.  P  <_  N )
5554biantrud 515 . . . . 5  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( P  <_  M  <->  ( P  <_  M  /\  -.  P  <_  N ) ) )
5655ifbid 3894 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
5753, 56eqtrd 2505 . . 3  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
5846, 57pm2.61dan 808 . 2  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 ) )
5915, 19, 583eqtrd 2509 1  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   ifcif 3872   class class class wbr 4395    |-> cmpt 4454   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    x. cmul 9562    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182    seqcseq 12251   ^cexp 12310   Primecprime 14701    pCnt cpc 14865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702  df-pc 14866
This theorem is referenced by:  pcmptdvds  14918  bposlem6  24296
  Copyright terms: Public domain W3C validator