MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmpt2 Structured version   Unicode version

Theorem pcmpt2 14260
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmpt.4  |-  ( ph  ->  P  e.  Prime )
pcmpt.5  |-  ( n  =  P  ->  A  =  B )
pcmpt2.6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmpt2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Distinct variable groups:    B, n    P, n
Allowed substitution hints:    ph( n)    A( n)    F( n)    M( n)    N( n)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3  |-  ( ph  ->  P  e.  Prime )
2 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
3 pcmpt.2 . . . . . . 7  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
42, 3pcmptcl 14258 . . . . . 6  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
54simprd 463 . . . . 5  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
6 pcmpt.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
7 pcmpt2.6 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
8 eluznn 11141 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
96, 7, 8syl2anc 661 . . . . 5  |-  ( ph  ->  M  e.  NN )
105, 9ffvelrnd 6013 . . . 4  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
1110nnzd 10954 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
1210nnne0d 10569 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )
135, 6ffvelrnd 6013 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
14 pcdiv 14224 . . 3  |-  ( ( P  e.  Prime  /\  (
(  seq 1 (  x.  ,  F ) `  M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) )  =  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  M )
)  -  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  N )
) ) )
151, 11, 12, 13, 14syl121anc 1228 . 2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
16 pcmpt.5 . . . 4  |-  ( n  =  P  ->  A  =  B )
172, 3, 9, 1, 16pcmpt 14259 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M
) )  =  if ( P  <_  M ,  B ,  0 ) )
182, 3, 6, 1, 16pcmpt 14259 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
1917, 18oveq12d 6293 . 2  |-  ( ph  ->  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) ) )
2016eleq1d 2529 . . . . . . . . 9  |-  ( n  =  P  ->  ( A  e.  NN0  <->  B  e.  NN0 ) )
2120rspcv 3203 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( A. n  e.  Prime  A  e. 
NN0  ->  B  e.  NN0 ) )
221, 3, 21sylc 60 . . . . . . 7  |-  ( ph  ->  B  e.  NN0 )
2322nn0cnd 10843 . . . . . 6  |-  ( ph  ->  B  e.  CC )
2423subidd 9907 . . . . 5  |-  ( ph  ->  ( B  -  B
)  =  0 )
2524adantr 465 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( B  -  B )  =  0 )
26 prmnn 14068 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
271, 26syl 16 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
2827nnred 10540 . . . . . . . 8  |-  ( ph  ->  P  e.  RR )
2928adantr 465 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  e.  RR )
306nnred 10540 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
3130adantr 465 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  e.  RR )
329nnred 10540 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
3332adantr 465 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  M  e.  RR )
34 simpr 461 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  N )
35 eluzle 11083 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
367, 35syl 16 . . . . . . . 8  |-  ( ph  ->  N  <_  M )
3736adantr 465 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  <_  M )
3829, 31, 33, 34, 37letrd 9727 . . . . . 6  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  M )
39 iftrue 3938 . . . . . 6  |-  ( P  <_  M  ->  if ( P  <_  M ,  B ,  0 )  =  B )
4038, 39syl 16 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  B )
41 iftrue 3938 . . . . . 6  |-  ( P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4241adantl 466 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4340, 42oveq12d 6293 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( B  -  B ) )
44 simpr 461 . . . . . 6  |-  ( ( P  <_  M  /\  -.  P  <_  N )  ->  -.  P  <_  N )
4544, 34nsyl3 119 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  -.  ( P  <_  M  /\  -.  P  <_  N ) )
46 iffalse 3941 . . . . 5  |-  ( -.  ( P  <_  M  /\  -.  P  <_  N
)  ->  if (
( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 )  =  0 )
4745, 46syl 16 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  if (
( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 )  =  0 )
4825, 43, 473eqtr4d 2511 . . 3  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
49 iffalse 3941 . . . . . 6  |-  ( -.  P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  0 )
5049oveq2d 6291 . . . . 5  |-  ( -.  P  <_  N  ->  ( if ( P  <_  M ,  B , 
0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  0 ) )
51 0cn 9577 . . . . . . 7  |-  0  e.  CC
52 ifcl 3974 . . . . . . 7  |-  ( ( B  e.  CC  /\  0  e.  CC )  ->  if ( P  <_  M ,  B , 
0 )  e.  CC )
5323, 51, 52sylancl 662 . . . . . 6  |-  ( ph  ->  if ( P  <_  M ,  B , 
0 )  e.  CC )
5453subid1d 9908 . . . . 5  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  - 
0 )  =  if ( P  <_  M ,  B ,  0 ) )
5550, 54sylan9eqr 2523 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( P  <_  M ,  B ,  0 ) )
56 simpr 461 . . . . . 6  |-  ( (
ph  /\  -.  P  <_  N )  ->  -.  P  <_  N )
5756biantrud 507 . . . . 5  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( P  <_  M  <->  ( P  <_  M  /\  -.  P  <_  N ) ) )
5857ifbid 3954 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
5955, 58eqtrd 2501 . . 3  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
6048, 59pm2.61dan 789 . 2  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 ) )
6115, 19, 603eqtrd 2505 1  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   ifcif 3932   class class class wbr 4440    |-> cmpt 4498   -->wf 5575   ` cfv 5579  (class class class)co 6275   CCcc 9479   RRcr 9480   0cc0 9481   1c1 9482    x. cmul 9486    <_ cle 9618    - cmin 9794    / cdiv 10195   NNcn 10525   NN0cn0 10784   ZZcz 10853   ZZ>=cuz 11071    seqcseq 12063   ^cexp 12122   Primecprime 14065    pCnt cpc 14208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-fz 11662  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-dvds 13837  df-gcd 13993  df-prm 14066  df-pc 14209
This theorem is referenced by:  pcmptdvds  14261  bposlem6  23285
  Copyright terms: Public domain W3C validator