MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcmpt2 Structured version   Unicode version

Theorem pcmpt2 14621
Description: Dividing two prime count maps yields a number with all dividing primes confined to an interval. (Contributed by Mario Carneiro, 14-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmpt.4  |-  ( ph  ->  P  e.  Prime )
pcmpt.5  |-  ( n  =  P  ->  A  =  B )
pcmpt2.6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmpt2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Distinct variable groups:    B, n    P, n
Allowed substitution hints:    ph( n)    A( n)    F( n)    M( n)    N( n)

Proof of Theorem pcmpt2
StepHypRef Expression
1 pcmpt.4 . . 3  |-  ( ph  ->  P  e.  Prime )
2 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
3 pcmpt.2 . . . . . . 7  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
42, 3pcmptcl 14619 . . . . . 6  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
54simprd 461 . . . . 5  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
6 pcmpt.3 . . . . . 6  |-  ( ph  ->  N  e.  NN )
7 pcmpt2.6 . . . . . 6  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
8 eluznn 11197 . . . . . 6  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
96, 7, 8syl2anc 659 . . . . 5  |-  ( ph  ->  M  e.  NN )
105, 9ffvelrnd 6010 . . . 4  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
1110nnzd 11007 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
1210nnne0d 10621 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )
135, 6ffvelrnd 6010 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
14 pcdiv 14585 . . 3  |-  ( ( P  e.  Prime  /\  (
(  seq 1 (  x.  ,  F ) `  M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `
 M )  =/=  0 )  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( P  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) )  =  ( ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  M )
)  -  ( P 
pCnt  (  seq 1
(  x.  ,  F
) `  N )
) ) )
151, 11, 12, 13, 14syl121anc 1235 . 2  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
16 pcmpt.5 . . . 4  |-  ( n  =  P  ->  A  =  B )
172, 3, 9, 1, 16pcmpt 14620 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M
) )  =  if ( P  <_  M ,  B ,  0 ) )
182, 3, 6, 1, 16pcmpt 14620 . . 3  |-  ( ph  ->  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( P  <_  N ,  B ,  0 ) )
1917, 18oveq12d 6296 . 2  |-  ( ph  ->  ( ( P  pCnt  (  seq 1 (  x.  ,  F ) `  M ) )  -  ( P  pCnt  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) ) )
2016eleq1d 2471 . . . . . . . . 9  |-  ( n  =  P  ->  ( A  e.  NN0  <->  B  e.  NN0 ) )
2120rspcv 3156 . . . . . . . 8  |-  ( P  e.  Prime  ->  ( A. n  e.  Prime  A  e. 
NN0  ->  B  e.  NN0 ) )
221, 3, 21sylc 59 . . . . . . 7  |-  ( ph  ->  B  e.  NN0 )
2322nn0cnd 10895 . . . . . 6  |-  ( ph  ->  B  e.  CC )
2423subidd 9955 . . . . 5  |-  ( ph  ->  ( B  -  B
)  =  0 )
2524adantr 463 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( B  -  B )  =  0 )
26 prmnn 14429 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
271, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
2827nnred 10591 . . . . . . . 8  |-  ( ph  ->  P  e.  RR )
2928adantr 463 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  e.  RR )
306nnred 10591 . . . . . . . 8  |-  ( ph  ->  N  e.  RR )
3130adantr 463 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  e.  RR )
329nnred 10591 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
3332adantr 463 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  M  e.  RR )
34 simpr 459 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  N )
35 eluzle 11139 . . . . . . . . 9  |-  ( M  e.  ( ZZ>= `  N
)  ->  N  <_  M )
367, 35syl 17 . . . . . . . 8  |-  ( ph  ->  N  <_  M )
3736adantr 463 . . . . . . 7  |-  ( (
ph  /\  P  <_  N )  ->  N  <_  M )
3829, 31, 33, 34, 37letrd 9773 . . . . . 6  |-  ( (
ph  /\  P  <_  N )  ->  P  <_  M )
3938iftrued 3893 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  B )
40 iftrue 3891 . . . . . 6  |-  ( P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4140adantl 464 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  if ( P  <_  N ,  B ,  0 )  =  B )
4239, 41oveq12d 6296 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( B  -  B ) )
43 simpr 459 . . . . . 6  |-  ( ( P  <_  M  /\  -.  P  <_  N )  ->  -.  P  <_  N )
4443, 34nsyl3 119 . . . . 5  |-  ( (
ph  /\  P  <_  N )  ->  -.  ( P  <_  M  /\  -.  P  <_  N ) )
4544iffalsed 3896 . . . 4  |-  ( (
ph  /\  P  <_  N )  ->  if (
( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 )  =  0 )
4625, 42, 453eqtr4d 2453 . . 3  |-  ( (
ph  /\  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
47 iffalse 3894 . . . . . 6  |-  ( -.  P  <_  N  ->  if ( P  <_  N ,  B ,  0 )  =  0 )
4847oveq2d 6294 . . . . 5  |-  ( -.  P  <_  N  ->  ( if ( P  <_  M ,  B , 
0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  ( if ( P  <_  M ,  B ,  0 )  -  0 ) )
49 0cn 9618 . . . . . . 7  |-  0  e.  CC
50 ifcl 3927 . . . . . . 7  |-  ( ( B  e.  CC  /\  0  e.  CC )  ->  if ( P  <_  M ,  B , 
0 )  e.  CC )
5123, 49, 50sylancl 660 . . . . . 6  |-  ( ph  ->  if ( P  <_  M ,  B , 
0 )  e.  CC )
5251subid1d 9956 . . . . 5  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  - 
0 )  =  if ( P  <_  M ,  B ,  0 ) )
5348, 52sylan9eqr 2465 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( P  <_  M ,  B ,  0 ) )
54 simpr 459 . . . . . 6  |-  ( (
ph  /\  -.  P  <_  N )  ->  -.  P  <_  N )
5554biantrud 505 . . . . 5  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( P  <_  M  <->  ( P  <_  M  /\  -.  P  <_  N ) ) )
5655ifbid 3907 . . . 4  |-  ( (
ph  /\  -.  P  <_  N )  ->  if ( P  <_  M ,  B ,  0 )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
5753, 56eqtrd 2443 . . 3  |-  ( (
ph  /\  -.  P  <_  N )  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
5846, 57pm2.61dan 792 . 2  |-  ( ph  ->  ( if ( P  <_  M ,  B ,  0 )  -  if ( P  <_  N ,  B ,  0 ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N
) ,  B , 
0 ) )
5915, 19, 583eqtrd 2447 1  |-  ( ph  ->  ( P  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) )  =  if ( ( P  <_  M  /\  -.  P  <_  N ) ,  B ,  0 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2754   ifcif 3885   class class class wbr 4395    |-> cmpt 4453   -->wf 5565   ` cfv 5569  (class class class)co 6278   CCcc 9520   RRcr 9521   0cc0 9522   1c1 9523    x. cmul 9527    <_ cle 9659    - cmin 9841    / cdiv 10247   NNcn 10576   NN0cn0 10836   ZZcz 10905   ZZ>=cuz 11127    seqcseq 12151   ^cexp 12210   Primecprime 14426    pCnt cpc 14569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-q 11228  df-rp 11266  df-fz 11727  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-dvds 14196  df-gcd 14354  df-prm 14427  df-pc 14570
This theorem is referenced by:  pcmptdvds  14622  bposlem6  23945
  Copyright terms: Public domain W3C validator