Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfvalN Structured version   Unicode version

Theorem pclfvalN 34978
Description: The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a  |-  A  =  ( Atoms `  K )
pclfval.s  |-  S  =  ( PSubSp `  K )
pclfval.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
pclfvalN  |-  ( K  e.  V  ->  U  =  ( x  e. 
~P A  |->  |^| { y  e.  S  |  x 
C_  y } ) )
Distinct variable groups:    x, y, A    x, K, y    x, S, y
Allowed substitution hints:    U( x, y)    V( x, y)

Proof of Theorem pclfvalN
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3127 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 pclfval.c . . 3  |-  U  =  ( PCl `  K
)
3 fveq2 5871 . . . . . . 7  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
4 pclfval.a . . . . . . 7  |-  A  =  ( Atoms `  K )
53, 4syl6eqr 2526 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
65pweqd 4020 . . . . 5  |-  ( k  =  K  ->  ~P ( Atoms `  k )  =  ~P A )
7 fveq2 5871 . . . . . . . 8  |-  ( k  =  K  ->  ( PSubSp `
 k )  =  ( PSubSp `  K )
)
8 pclfval.s . . . . . . . 8  |-  S  =  ( PSubSp `  K )
97, 8syl6eqr 2526 . . . . . . 7  |-  ( k  =  K  ->  ( PSubSp `
 k )  =  S )
10 biidd 237 . . . . . . 7  |-  ( k  =  K  ->  (
x  C_  y  <->  x  C_  y
) )
119, 10rabeqbidv 3113 . . . . . 6  |-  ( k  =  K  ->  { y  e.  ( PSubSp `  k
)  |  x  C_  y }  =  {
y  e.  S  |  x  C_  y } )
1211inteqd 4292 . . . . 5  |-  ( k  =  K  ->  |^| { y  e.  ( PSubSp `  k
)  |  x  C_  y }  =  |^| { y  e.  S  |  x  C_  y } )
136, 12mpteq12dv 4530 . . . 4  |-  ( k  =  K  ->  (
x  e.  ~P ( Atoms `  k )  |->  |^|
{ y  e.  (
PSubSp `  k )  |  x  C_  y }
)  =  ( x  e.  ~P A  |->  |^|
{ y  e.  S  |  x  C_  y } ) )
14 df-pclN 34977 . . . 4  |-  PCl  =  ( k  e.  _V  |->  ( x  e.  ~P ( Atoms `  k )  |-> 
|^| { y  e.  (
PSubSp `  k )  |  x  C_  y }
) )
15 fvex 5881 . . . . . . 7  |-  ( Atoms `  K )  e.  _V
164, 15eqeltri 2551 . . . . . 6  |-  A  e. 
_V
1716pwex 4635 . . . . 5  |-  ~P A  e.  _V
1817mptex 6141 . . . 4  |-  ( x  e.  ~P A  |->  |^|
{ y  e.  S  |  x  C_  y } )  e.  _V
1913, 14, 18fvmpt 5956 . . 3  |-  ( K  e.  _V  ->  ( PCl `  K )  =  ( x  e.  ~P A  |->  |^| { y  e.  S  |  x  C_  y } ) )
202, 19syl5eq 2520 . 2  |-  ( K  e.  _V  ->  U  =  ( x  e. 
~P A  |->  |^| { y  e.  S  |  x 
C_  y } ) )
211, 20syl 16 1  |-  ( K  e.  V  ->  U  =  ( x  e. 
~P A  |->  |^| { y  e.  S  |  x 
C_  y } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   {crab 2821   _Vcvv 3118    C_ wss 3481   ~Pcpw 4015   |^|cint 4287    |-> cmpt 4510   ` cfv 5593   Atomscatm 34353   PSubSpcpsubsp 34585   PClcpclN 34976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-int 4288  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-pclN 34977
This theorem is referenced by:  pclvalN  34979
  Copyright terms: Public domain W3C validator