Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclfinclN Structured version   Visualization version   Unicode version

Theorem pclfinclN 33515
Description: The projective subspace closure of a finite set of atoms is a closed subspace. Compare the (non-closed) subspace version pclfinN 33465 and also pclcmpatN 33466. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfincl.a  |-  A  =  ( Atoms `  K )
pclfincl.c  |-  U  =  ( PCl `  K
)
pclfincl.s  |-  S  =  ( PSubCl `  K )
Assertion
Ref Expression
pclfinclN  |-  ( ( K  e.  HL  /\  X  C_  A  /\  X  e.  Fin )  ->  ( U `  X )  e.  S )

Proof of Theorem pclfinclN
Dummy variables  q  p  w  x  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3453 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  A  <->  (/)  C_  A
) )
21anbi2d 710 . . . . 5  |-  ( x  =  (/)  ->  ( ( K  e.  HL  /\  x  C_  A )  <->  ( K  e.  HL  /\  (/)  C_  A
) ) )
3 fveq2 5865 . . . . . 6  |-  ( x  =  (/)  ->  ( U `
 x )  =  ( U `  (/) ) )
43eleq1d 2513 . . . . 5  |-  ( x  =  (/)  ->  ( ( U `  x )  e.  S  <->  ( U `  (/) )  e.  S
) )
52, 4imbi12d 322 . . . 4  |-  ( x  =  (/)  ->  ( ( ( K  e.  HL  /\  x  C_  A )  ->  ( U `  x
)  e.  S )  <-> 
( ( K  e.  HL  /\  (/)  C_  A
)  ->  ( U `  (/) )  e.  S
) ) )
6 sseq1 3453 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
76anbi2d 710 . . . . 5  |-  ( x  =  y  ->  (
( K  e.  HL  /\  x  C_  A )  <->  ( K  e.  HL  /\  y  C_  A ) ) )
8 fveq2 5865 . . . . . 6  |-  ( x  =  y  ->  ( U `  x )  =  ( U `  y ) )
98eleq1d 2513 . . . . 5  |-  ( x  =  y  ->  (
( U `  x
)  e.  S  <->  ( U `  y )  e.  S
) )
107, 9imbi12d 322 . . . 4  |-  ( x  =  y  ->  (
( ( K  e.  HL  /\  x  C_  A )  ->  ( U `  x )  e.  S )  <->  ( ( K  e.  HL  /\  y  C_  A )  ->  ( U `  y )  e.  S ) ) )
11 sseq1 3453 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  C_  A 
<->  ( y  u.  {
z } )  C_  A ) )
1211anbi2d 710 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( K  e.  HL  /\  x  C_  A )  <->  ( K  e.  HL  /\  ( y  u.  { z } )  C_  A )
) )
13 fveq2 5865 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( U `  x )  =  ( U `  ( y  u.  { z } ) ) )
1413eleq1d 2513 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( U `
 x )  e.  S  <->  ( U `  ( y  u.  {
z } ) )  e.  S ) )
1512, 14imbi12d 322 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ( K  e.  HL  /\  x  C_  A )  -> 
( U `  x
)  e.  S )  <-> 
( ( K  e.  HL  /\  ( y  u.  { z } )  C_  A )  ->  ( U `  (
y  u.  { z } ) )  e.  S ) ) )
16 sseq1 3453 . . . . . 6  |-  ( x  =  X  ->  (
x  C_  A  <->  X  C_  A
) )
1716anbi2d 710 . . . . 5  |-  ( x  =  X  ->  (
( K  e.  HL  /\  x  C_  A )  <->  ( K  e.  HL  /\  X  C_  A ) ) )
18 fveq2 5865 . . . . . 6  |-  ( x  =  X  ->  ( U `  x )  =  ( U `  X ) )
1918eleq1d 2513 . . . . 5  |-  ( x  =  X  ->  (
( U `  x
)  e.  S  <->  ( U `  X )  e.  S
) )
2017, 19imbi12d 322 . . . 4  |-  ( x  =  X  ->  (
( ( K  e.  HL  /\  x  C_  A )  ->  ( U `  x )  e.  S )  <->  ( ( K  e.  HL  /\  X  C_  A )  ->  ( U `  X )  e.  S ) ) )
21 pclfincl.c . . . . . . 7  |-  U  =  ( PCl `  K
)
2221pcl0N 33487 . . . . . 6  |-  ( K  e.  HL  ->  ( U `  (/) )  =  (/) )
23 pclfincl.s . . . . . . 7  |-  S  =  ( PSubCl `  K )
24230psubclN 33508 . . . . . 6  |-  ( K  e.  HL  ->  (/)  e.  S
)
2522, 24eqeltrd 2529 . . . . 5  |-  ( K  e.  HL  ->  ( U `  (/) )  e.  S )
2625adantr 467 . . . 4  |-  ( ( K  e.  HL  /\  (/)  C_  A )  ->  ( U `  (/) )  e.  S )
27 anass 655 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  y  C_  A )  /\  z  e.  A
)  <->  ( K  e.  HL  /\  ( y 
C_  A  /\  z  e.  A ) ) )
28 vex 3048 . . . . . . . . . . 11  |-  z  e. 
_V
2928snss 4096 . . . . . . . . . 10  |-  ( z  e.  A  <->  { z }  C_  A )
3029anbi2i 700 . . . . . . . . 9  |-  ( ( y  C_  A  /\  z  e.  A )  <->  ( y  C_  A  /\  { z }  C_  A
) )
31 unss 3608 . . . . . . . . 9  |-  ( ( y  C_  A  /\  { z }  C_  A
)  <->  ( y  u. 
{ z } ) 
C_  A )
3230, 31bitri 253 . . . . . . . 8  |-  ( ( y  C_  A  /\  z  e.  A )  <->  ( y  u.  { z } )  C_  A
)
3332anbi2i 700 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( y  C_  A  /\  z  e.  A
) )  <->  ( K  e.  HL  /\  ( y  u.  { z } )  C_  A )
)
3427, 33bitr2i 254 . . . . . 6  |-  ( ( K  e.  HL  /\  ( y  u.  {
z } )  C_  A )  <->  ( ( K  e.  HL  /\  y  C_  A )  /\  z  e.  A ) )
35 simpllr 769 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  y  =  (/) )
3635uneq1d 3587 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
y  u.  { z } )  =  (
(/)  u.  { z } ) )
37 uncom 3578 . . . . . . . . . . . . . . 15  |-  ( (/)  u. 
{ z } )  =  ( { z }  u.  (/) )
38 un0 3759 . . . . . . . . . . . . . . 15  |-  ( { z }  u.  (/) )  =  { z }
3937, 38eqtri 2473 . . . . . . . . . . . . . 14  |-  ( (/)  u. 
{ z } )  =  { z }
4036, 39syl6eq 2501 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
y  u.  { z } )  =  {
z } )
4140fveq2d 5869 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  ( y  u.  { z } ) )  =  ( U `
 { z } ) )
42 simplrl 770 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  K  e.  HL )
43 hlatl 32926 . . . . . . . . . . . . . . 15  |-  ( K  e.  HL  ->  K  e.  AtLat )
4442, 43syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  K  e.  AtLat )
45 simprr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  z  e.  A )
46 pclfincl.a . . . . . . . . . . . . . . 15  |-  A  =  ( Atoms `  K )
47 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( PSubSp `  K )  =  (
PSubSp `  K )
4846, 47snatpsubN 33315 . . . . . . . . . . . . . 14  |-  ( ( K  e.  AtLat  /\  z  e.  A )  ->  { z }  e.  ( PSubSp `  K ) )
4944, 45, 48syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  { z }  e.  ( PSubSp `  K ) )
5047, 21pclidN 33461 . . . . . . . . . . . . 13  |-  ( ( K  e.  HL  /\  { z }  e.  (
PSubSp `  K ) )  ->  ( U `  { z } )  =  { z } )
5142, 49, 50syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  { z } )  =  {
z } )
5241, 51eqtrd 2485 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  ( y  u.  { z } ) )  =  { z } )
5346, 23atpsubclN 33510 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  z  e.  A )  ->  { z }  e.  S )
5442, 45, 53syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  { z }  e.  S )
5552, 54eqeltrd 2529 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
Fin  /\  y  =  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  ( y  u.  { z } ) )  e.  S )
5655exp43 617 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  y  =  (/) )  -> 
( ( K  e.  HL  /\  y  C_  A )  ->  (
( U `  y
)  e.  S  -> 
( z  e.  A  ->  ( U `  (
y  u.  { z } ) )  e.  S ) ) ) )
57 simplrl 770 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  K  e.  HL )
5846, 21pclssidN 33460 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  y  C_  A )  -> 
y  C_  ( U `  y ) )
5958ad2antlr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  y  C_  ( U `  y
) )
60 unss1 3603 . . . . . . . . . . . . . . . 16  |-  ( y 
C_  ( U `  y )  ->  (
y  u.  { z } )  C_  (
( U `  y
)  u.  { z } ) )
6159, 60syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
y  u.  { z } )  C_  (
( U `  y
)  u.  { z } ) )
62 simprl 764 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  y )  e.  S )
6346, 23psubclssatN 33506 . . . . . . . . . . . . . . . . 17  |-  ( ( K  e.  HL  /\  ( U `  y )  e.  S )  -> 
( U `  y
)  C_  A )
6457, 62, 63syl2anc 667 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  y )  C_  A )
65 snssi 4116 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  A  ->  { z }  C_  A )
6665ad2antll 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  { z }  C_  A )
67 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  ( +P `  K )  =  ( +P `  K )
6846, 67paddunssN 33373 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( U `  y ) 
C_  A  /\  {
z }  C_  A
)  ->  ( ( U `  y )  u.  { z } ) 
C_  ( ( U `
 y ) ( +P `  K
) { z } ) )
6957, 64, 66, 68syl3anc 1268 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
( U `  y
)  u.  { z } )  C_  (
( U `  y
) ( +P `  K ) { z } ) )
7061, 69sstrd 3442 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
y  u.  { z } )  C_  (
( U `  y
) ( +P `  K ) { z } ) )
7146, 67paddssat 33379 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( U `  y ) 
C_  A  /\  {
z }  C_  A
)  ->  ( ( U `  y )
( +P `  K ) { z } )  C_  A
)
7257, 64, 66, 71syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
( U `  y
) ( +P `  K ) { z } )  C_  A
)
7346, 21pclssN 33459 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( y  u.  {
z } )  C_  ( ( U `  y ) ( +P `  K ) { z } )  /\  ( ( U `
 y ) ( +P `  K
) { z } )  C_  A )  ->  ( U `  (
y  u.  { z } ) )  C_  ( U `  ( ( U `  y ) ( +P `  K ) { z } ) ) )
7457, 70, 72, 73syl3anc 1268 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  ( y  u.  { z } ) )  C_  ( U `  ( ( U `  y ) ( +P `  K ) { z } ) ) )
75 simprr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  z  e.  A )
7646, 67, 23paddatclN 33514 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  HL  /\  ( U `  y )  e.  S  /\  z  e.  A )  ->  (
( U `  y
) ( +P `  K ) { z } )  e.  S
)
7757, 62, 75, 76syl3anc 1268 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
( U `  y
) ( +P `  K ) { z } )  e.  S
)
7847, 23psubclsubN 33505 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( ( U `  y ) ( +P `  K ) { z } )  e.  S )  -> 
( ( U `  y ) ( +P `  K ) { z } )  e.  ( PSubSp `  K
) )
7957, 77, 78syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
( U `  y
) ( +P `  K ) { z } )  e.  (
PSubSp `  K ) )
8047, 21pclidN 33461 . . . . . . . . . . . . . 14  |-  ( ( K  e.  HL  /\  ( ( U `  y ) ( +P `  K ) { z } )  e.  ( PSubSp `  K
) )  ->  ( U `  ( ( U `  y )
( +P `  K ) { z } ) )  =  ( ( U `  y ) ( +P `  K ) { z } ) )
8157, 79, 80syl2anc 667 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  ( ( U `  y )
( +P `  K ) { z } ) )  =  ( ( U `  y ) ( +P `  K ) { z } ) )
8274, 81sseqtrd 3468 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  ( y  u.  { z } ) )  C_  ( ( U `  y )
( +P `  K ) { z } ) )
83 hllat 32929 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  HL  ->  K  e.  Lat )
8457, 83syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  K  e.  Lat )
85 simpllr 769 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  y  =/=  (/) )
8646, 21pcl0bN 33488 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( K  e.  HL  /\  y  C_  A )  -> 
( ( U `  y )  =  (/)  <->  y  =  (/) ) )
8786ad2antlr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
( U `  y
)  =  (/)  <->  y  =  (/) ) )
8887necon3bid 2668 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
( U `  y
)  =/=  (/)  <->  y  =/=  (/) ) )
8985, 88mpbird 236 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  y )  =/=  (/) )
90 eqid 2451 . . . . . . . . . . . . . . . . . 18  |-  ( le
`  K )  =  ( le `  K
)
91 eqid 2451 . . . . . . . . . . . . . . . . . 18  |-  ( join `  K )  =  (
join `  K )
9290, 91, 46, 67elpaddat 33369 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  Lat  /\  ( U `  y
)  C_  A  /\  z  e.  A )  /\  ( U `  y
)  =/=  (/) )  -> 
( q  e.  ( ( U `  y
) ( +P `  K ) { z } )  <->  ( q  e.  A  /\  E. p  e.  ( U `  y
) q ( le
`  K ) ( p ( join `  K
) z ) ) ) )
9384, 64, 75, 89, 92syl31anc 1271 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
q  e.  ( ( U `  y ) ( +P `  K ) { z } )  <->  ( q  e.  A  /\  E. p  e.  ( U `  y
) q ( le
`  K ) ( p ( join `  K
) z ) ) ) )
94 simp1rl 1073 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  ->  K  e.  HL )
95943ad2ant1 1029 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  ->  K  e.  HL )
9695adantr 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  /\  ( w  e.  ( PSubSp `  K )  /\  ( y  u.  {
z } )  C_  w ) )  ->  K  e.  HL )
97 simprl 764 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  /\  ( w  e.  ( PSubSp `  K )  /\  ( y  u.  {
z } )  C_  w ) )  ->  w  e.  ( PSubSp `  K ) )
98 simpl13 1085 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  /\  ( w  e.  ( PSubSp `  K )  /\  ( y  u.  {
z } )  C_  w ) )  -> 
q  e.  A )
99 unss 3608 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  C_  w  /\  { z }  C_  w
)  <->  ( y  u. 
{ z } ) 
C_  w )
100 simpl 459 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( y  C_  w  /\  { z }  C_  w
)  ->  y  C_  w )
10199, 100sylbir 217 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  u.  { z } )  C_  w  ->  y  C_  w )
102101ad2antll 735 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  /\  ( w  e.  ( PSubSp `  K )  /\  ( y  u.  {
z } )  C_  w ) )  -> 
y  C_  w )
103 simpl2 1012 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  /\  ( w  e.  ( PSubSp `  K )  /\  ( y  u.  {
z } )  C_  w ) )  ->  p  e.  ( U `  y ) )
10447, 21elpcliN 33458 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( K  e.  HL  /\  y  C_  w  /\  w  e.  ( PSubSp `  K ) )  /\  p  e.  ( U `  y ) )  ->  p  e.  w )
10596, 102, 97, 103, 104syl31anc 1271 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  /\  ( w  e.  ( PSubSp `  K )  /\  ( y  u.  {
z } )  C_  w ) )  ->  p  e.  w )
10628snss 4096 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( z  e.  w  <->  { z }  C_  w )
107106biimpri 210 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( { z }  C_  w  ->  z  e.  w )
108107adantl 468 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  C_  w  /\  { z }  C_  w
)  ->  z  e.  w )
10999, 108sylbir 217 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  u.  { z } )  C_  w  ->  z  e.  w )
110109ad2antll 735 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  /\  ( w  e.  ( PSubSp `  K )  /\  ( y  u.  {
z } )  C_  w ) )  -> 
z  e.  w )
111 simpl3 1013 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  /\  ( w  e.  ( PSubSp `  K )  /\  ( y  u.  {
z } )  C_  w ) )  -> 
q ( le `  K ) ( p ( join `  K
) z ) )
11290, 91, 46, 47psubspi2N 33313 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( K  e.  HL  /\  w  e.  ( PSubSp `  K )  /\  q  e.  A )  /\  (
p  e.  w  /\  z  e.  w  /\  q ( le `  K ) ( p ( join `  K
) z ) ) )  ->  q  e.  w )
11396, 97, 98, 105, 110, 111, 112syl33anc 1283 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( y  e.  Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  /\  p  e.  ( U `  y
)  /\  q ( le `  K ) ( p ( join `  K
) z ) )  /\  ( w  e.  ( PSubSp `  K )  /\  ( y  u.  {
z } )  C_  w ) )  -> 
q  e.  w )
114113exp520 1230 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  ->  (
p  e.  ( U `
 y )  -> 
( q ( le
`  K ) ( p ( join `  K
) z )  -> 
( w  e.  (
PSubSp `  K )  -> 
( ( y  u. 
{ z } ) 
C_  w  ->  q  e.  w ) ) ) ) )
115114rexlimdv 2877 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
)  /\  q  e.  A )  ->  ( E. p  e.  ( U `  y )
q ( le `  K ) ( p ( join `  K
) z )  -> 
( w  e.  (
PSubSp `  K )  -> 
( ( y  u. 
{ z } ) 
C_  w  ->  q  e.  w ) ) ) )
1161153expia 1210 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
q  e.  A  -> 
( E. p  e.  ( U `  y
) q ( le
`  K ) ( p ( join `  K
) z )  -> 
( w  e.  (
PSubSp `  K )  -> 
( ( y  u. 
{ z } ) 
C_  w  ->  q  e.  w ) ) ) ) )
117116impd 433 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
( q  e.  A  /\  E. p  e.  ( U `  y ) q ( le `  K ) ( p ( join `  K
) z ) )  ->  ( w  e.  ( PSubSp `  K )  ->  ( ( y  u. 
{ z } ) 
C_  w  ->  q  e.  w ) ) ) )
11893, 117sylbid 219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
q  e.  ( ( U `  y ) ( +P `  K ) { z } )  ->  (
w  e.  ( PSubSp `  K )  ->  (
( y  u.  {
z } )  C_  w  ->  q  e.  w
) ) ) )
119118ralrimdv 2804 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
q  e.  ( ( U `  y ) ( +P `  K ) { z } )  ->  A. w  e.  ( PSubSp `  K )
( ( y  u. 
{ z } ) 
C_  w  ->  q  e.  w ) ) )
120 simplrr 771 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  y  C_  A )
121120, 75jca 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
y  C_  A  /\  z  e.  A )
)
122121, 32sylib 200 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
y  u.  { z } )  C_  A
)
123 vex 3048 . . . . . . . . . . . . . . . 16  |-  q  e. 
_V
12446, 47, 21, 123elpclN 33457 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  HL  /\  ( y  u.  {
z } )  C_  A )  ->  (
q  e.  ( U `
 ( y  u. 
{ z } ) )  <->  A. w  e.  (
PSubSp `  K ) ( ( y  u.  {
z } )  C_  w  ->  q  e.  w
) ) )
12557, 122, 124syl2anc 667 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
q  e.  ( U `
 ( y  u. 
{ z } ) )  <->  A. w  e.  (
PSubSp `  K ) ( ( y  u.  {
z } )  C_  w  ->  q  e.  w
) ) )
126119, 125sylibrd 238 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
q  e.  ( ( U `  y ) ( +P `  K ) { z } )  ->  q  e.  ( U `  (
y  u.  { z } ) ) ) )
127126ssrdv 3438 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  (
( U `  y
) ( +P `  K ) { z } )  C_  ( U `  ( y  u.  { z } ) ) )
12882, 127eqssd 3449 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  ( y  u.  { z } ) )  =  ( ( U `  y ) ( +P `  K ) { z } ) )
129128, 77eqeltrd 2529 . . . . . . . . . 10  |-  ( ( ( ( y  e. 
Fin  /\  y  =/=  (/) )  /\  ( K  e.  HL  /\  y  C_  A ) )  /\  ( ( U `  y )  e.  S  /\  z  e.  A
) )  ->  ( U `  ( y  u.  { z } ) )  e.  S )
130129exp43 617 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  y  =/=  (/) )  ->  (
( K  e.  HL  /\  y  C_  A )  ->  ( ( U `  y )  e.  S  ->  ( z  e.  A  ->  ( U `  (
y  u.  { z } ) )  e.  S ) ) ) )
13156, 130pm2.61dane 2711 . . . . . . . 8  |-  ( y  e.  Fin  ->  (
( K  e.  HL  /\  y  C_  A )  ->  ( ( U `  y )  e.  S  ->  ( z  e.  A  ->  ( U `  (
y  u.  { z } ) )  e.  S ) ) ) )
132131a2d 29 . . . . . . 7  |-  ( y  e.  Fin  ->  (
( ( K  e.  HL  /\  y  C_  A )  ->  ( U `  y )  e.  S )  ->  (
( K  e.  HL  /\  y  C_  A )  ->  ( z  e.  A  ->  ( U `  (
y  u.  { z } ) )  e.  S ) ) ) )
133132imp4b 595 . . . . . 6  |-  ( ( y  e.  Fin  /\  ( ( K  e.  HL  /\  y  C_  A )  ->  ( U `  y )  e.  S ) )  -> 
( ( ( K  e.  HL  /\  y  C_  A )  /\  z  e.  A )  ->  ( U `  ( y  u.  { z } ) )  e.  S ) )
13434, 133syl5bi 221 . . . . 5  |-  ( ( y  e.  Fin  /\  ( ( K  e.  HL  /\  y  C_  A )  ->  ( U `  y )  e.  S ) )  -> 
( ( K  e.  HL  /\  ( y  u.  { z } )  C_  A )  ->  ( U `  (
y  u.  { z } ) )  e.  S ) )
135134ex 436 . . . 4  |-  ( y  e.  Fin  ->  (
( ( K  e.  HL  /\  y  C_  A )  ->  ( U `  y )  e.  S )  ->  (
( K  e.  HL  /\  ( y  u.  {
z } )  C_  A )  ->  ( U `  ( y  u.  { z } ) )  e.  S ) ) )
1365, 10, 15, 20, 26, 135findcard2 7811 . . 3  |-  ( X  e.  Fin  ->  (
( K  e.  HL  /\  X  C_  A )  ->  ( U `  X
)  e.  S ) )
1371363impib 1206 . 2  |-  ( ( X  e.  Fin  /\  K  e.  HL  /\  X  C_  A )  ->  ( U `  X )  e.  S )
1381373coml 1215 1  |-  ( ( K  e.  HL  /\  X  C_  A  /\  X  e.  Fin )  ->  ( U `  X )  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738    u. cun 3402    C_ wss 3404   (/)c0 3731   {csn 3968   class class class wbr 4402   ` cfv 5582  (class class class)co 6290   Fincfn 7569   lecple 15197   joincjn 16189   Latclat 16291   Atomscatm 32829   AtLatcal 32830   HLchlt 32916   PSubSpcpsubsp 33061   +Pcpadd 33360   PClcpclN 33452   PSubClcpscN 33499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-riotaBAD 32525
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-undef 7020  df-1o 7182  df-er 7363  df-en 7570  df-fin 7573  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-oposet 32742  df-ol 32744  df-oml 32745  df-covers 32832  df-ats 32833  df-atl 32864  df-cvlat 32888  df-hlat 32917  df-psubsp 33068  df-pmap 33069  df-padd 33361  df-pclN 33453  df-polarityN 33468  df-psubclN 33500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator