MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclem6 Structured version   Unicode version

Theorem pclem6 921
Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Nov-2012.)
Assertion
Ref Expression
pclem6  |-  ( (
ph 
<->  ( ps  /\  -.  ph ) )  ->  -.  ps )

Proof of Theorem pclem6
StepHypRef Expression
1 ibar 504 . . 3  |-  ( ps 
->  ( -.  ph  <->  ( ps  /\ 
-.  ph ) ) )
2 nbbn 358 . . 3  |-  ( ( -.  ph  <->  ( ps  /\  -.  ph ) )  <->  -.  ( ph 
<->  ( ps  /\  -.  ph ) ) )
31, 2sylib 196 . 2  |-  ( ps 
->  -.  ( ph  <->  ( ps  /\ 
-.  ph ) ) )
43con2i 120 1  |-  ( (
ph 
<->  ( ps  /\  -.  ph ) )  ->  -.  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by:  nalset  4424  pwnss  4452  bj-nalset  32172
  Copyright terms: Public domain W3C validator