MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pclem Structured version   Unicode version

Theorem pclem 13910
Description: - Lemma for the prime power pre-function's properties. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypothesis
Ref Expression
pclem.1  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
Assertion
Ref Expression
pclem  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x ) )
Distinct variable groups:    x, y, A    x, n, y, N    P, n, x, y
Allowed substitution hint:    A( n)

Proof of Theorem pclem
StepHypRef Expression
1 pclem.1 . . . . 5  |-  A  =  { n  e.  NN0  |  ( P ^ n
)  ||  N }
2 ssrab2 3442 . . . . 5  |-  { n  e.  NN0  |  ( P ^ n )  ||  N }  C_  NN0
31, 2eqsstri 3391 . . . 4  |-  A  C_  NN0
4 nn0ssz 10672 . . . 4  |-  NN0  C_  ZZ
53, 4sstri 3370 . . 3  |-  A  C_  ZZ
65a1i 11 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A  C_  ZZ )
7 0nn0 10599 . . . . 5  |-  0  e.  NN0
87a1i 11 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
0  e.  NN0 )
9 eluzelz 10875 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
109zcnd 10753 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  CC )
1110adantr 465 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  CC )
1211exp0d 12007 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ 0 )  =  1 )
13 1dvds 13552 . . . . . 6  |-  ( N  e.  ZZ  ->  1  ||  N )
1413ad2antrl 727 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
1  ||  N )
1512, 14eqbrtrd 4317 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( P ^ 0 )  ||  N )
16 oveq2 6104 . . . . . 6  |-  ( n  =  0  ->  ( P ^ n )  =  ( P ^ 0 ) )
1716breq1d 4307 . . . . 5  |-  ( n  =  0  ->  (
( P ^ n
)  ||  N  <->  ( P ^ 0 )  ||  N ) )
1817, 1elrab2 3124 . . . 4  |-  ( 0  e.  A  <->  ( 0  e.  NN0  /\  ( P ^ 0 )  ||  N ) )
198, 15, 18sylanbrc 664 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
0  e.  A )
20 ne0i 3648 . . 3  |-  ( 0  e.  A  ->  A  =/=  (/) )
2119, 20syl 16 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  A  =/=  (/) )
22 nnssz 10671 . . 3  |-  NN  C_  ZZ
23 zcn 10656 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
2423abscld 12927 . . . . . 6  |-  ( N  e.  ZZ  ->  ( abs `  N )  e.  RR )
2524ad2antrl 727 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( abs `  N
)  e.  RR )
26 eluzelre 10876 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  RR )
2726adantr 465 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  P  e.  RR )
28 eluz2b2 10932 . . . . . . 7  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
2928simprbi 464 . . . . . 6  |-  ( P  e.  ( ZZ>= `  2
)  ->  1  <  P )
3029adantr 465 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
1  <  P )
31 expnbnd 11998 . . . . 5  |-  ( ( ( abs `  N
)  e.  RR  /\  P  e.  RR  /\  1  <  P )  ->  E. x  e.  NN  ( abs `  N
)  <  ( P ^ x ) )
3225, 27, 30, 31syl3anc 1218 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  NN  ( abs `  N )  <  ( P ^
x ) )
33 simprr 756 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  A )
34 oveq2 6104 . . . . . . . . . . . . . . 15  |-  ( n  =  y  ->  ( P ^ n )  =  ( P ^ y
) )
3534breq1d 4307 . . . . . . . . . . . . . 14  |-  ( n  =  y  ->  (
( P ^ n
)  ||  N  <->  ( P ^ y )  ||  N ) )
3635, 1elrab2 3124 . . . . . . . . . . . . 13  |-  ( y  e.  A  <->  ( y  e.  NN0  /\  ( P ^ y )  ||  N ) )
3733, 36sylib 196 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y  e.  NN0  /\  ( P ^ y
)  ||  N )
)
3837simprd 463 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  ||  N )
3928simplbi 460 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
4039ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  P  e.  NN )
4137simpld 459 . . . . . . . . . . . . . 14  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  NN0 )
4240, 41nnexpcld 12034 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  e.  NN )
4342nnzd 10751 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  e.  ZZ )
44 simplrl 759 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  N  e.  ZZ )
45 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  N  =/=  0 )
46 dvdsleabs 13584 . . . . . . . . . . . 12  |-  ( ( ( P ^ y
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( P ^ y
)  ||  N  ->  ( P ^ y )  <_  ( abs `  N
) ) )
4743, 44, 45, 46syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( P ^
y )  ||  N  ->  ( P ^ y
)  <_  ( abs `  N ) ) )
4838, 47mpd 15 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  <_  ( abs `  N ) )
4942nnred 10342 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ y
)  e.  RR )
5025adantr 465 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( abs `  N
)  e.  RR )
5126ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  P  e.  RR )
52 nnnn0 10591 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  x  e.  NN0 )
5352ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  NN0 )
5451, 53reexpcld 12030 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( P ^ x
)  e.  RR )
55 lelttr 9470 . . . . . . . . . . 11  |-  ( ( ( P ^ y
)  e.  RR  /\  ( abs `  N )  e.  RR  /\  ( P ^ x )  e.  RR )  ->  (
( ( P ^
y )  <_  ( abs `  N )  /\  ( abs `  N )  <  ( P ^
x ) )  -> 
( P ^ y
)  <  ( P ^ x ) ) )
5649, 50, 54, 55syl3anc 1218 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( ( P ^ y )  <_ 
( abs `  N
)  /\  ( abs `  N )  <  ( P ^ x ) )  ->  ( P ^
y )  <  ( P ^ x ) ) )
5748, 56mpand 675 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( abs `  N
)  <  ( P ^ x )  -> 
( P ^ y
)  <  ( P ^ x ) ) )
5841nn0zd 10750 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  ZZ )
59 nnz 10673 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  ZZ )
6059ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  ZZ )
6129ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
1  <  P )
6251, 58, 60, 61ltexp2d 12042 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y  <  x  <->  ( P ^ y )  <  ( P ^
x ) ) )
6357, 62sylibrd 234 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( abs `  N
)  <  ( P ^ x )  -> 
y  <  x )
)
6441nn0red 10642 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
y  e.  RR )
65 nnre 10334 . . . . . . . . . 10  |-  ( x  e.  NN  ->  x  e.  RR )
6665ad2antrl 727 . . . . . . . . 9  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  ->  x  e.  RR )
67 ltle 9468 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <  x  ->  y  <_  x )
)
6864, 66, 67syl2anc 661 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( y  <  x  ->  y  <_  x )
)
6963, 68syld 44 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  ( x  e.  NN  /\  y  e.  A ) )  -> 
( ( abs `  N
)  <  ( P ^ x )  -> 
y  <_  x )
)
7069anassrs 648 . . . . . 6  |-  ( ( ( ( P  e.  ( ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  NN )  /\  y  e.  A )  ->  (
( abs `  N
)  <  ( P ^ x )  -> 
y  <_  x )
)
7170ralrimdva 2811 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  /\  x  e.  NN )  ->  (
( abs `  N
)  <  ( P ^ x )  ->  A. y  e.  A  y  <_  x ) )
7271reximdva 2833 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( E. x  e.  NN  ( abs `  N
)  <  ( P ^ x )  ->  E. x  e.  NN  A. y  e.  A  y  <_  x ) )
7332, 72mpd 15 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  NN  A. y  e.  A  y  <_  x )
74 ssrexv 3422 . . 3  |-  ( NN  C_  ZZ  ->  ( E. x  e.  NN  A. y  e.  A  y  <_  x  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x ) )
7522, 73, 74mpsyl 63 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  A. y  e.  A  y  <_  x )
766, 21, 753jca 1168 1  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( A  C_  ZZ  /\  A  =/=  (/)  /\  E. x  e.  ZZ  A. y  e.  A  y  <_  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2611   A.wral 2720   E.wrex 2721   {crab 2724    C_ wss 3333   (/)c0 3642   class class class wbr 4297   ` cfv 5423  (class class class)co 6096   CCcc 9285   RRcr 9286   0cc0 9287   1c1 9288    < clt 9423    <_ cle 9424   NNcn 10327   2c2 10376   NN0cn0 10584   ZZcz 10651   ZZ>=cuz 10866   ^cexp 11870   abscabs 12728    || cdivides 13540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364  ax-pre-sup 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-2nd 6583  df-recs 6837  df-rdg 6871  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-sup 7696  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-div 9999  df-nn 10328  df-2 10385  df-3 10386  df-n0 10585  df-z 10652  df-uz 10867  df-rp 10997  df-fl 11647  df-seq 11812  df-exp 11871  df-cj 12593  df-re 12594  df-im 12595  df-sqr 12729  df-abs 12730  df-dvds 13541
This theorem is referenced by:  pcprecl  13911  pcprendvds  13912  pcpremul  13915
  Copyright terms: Public domain W3C validator