Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pclclN Structured version   Unicode version

Theorem pclclN 33375
Description: Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
pclfval.a  |-  A  =  ( Atoms `  K )
pclfval.s  |-  S  =  ( PSubSp `  K )
pclfval.c  |-  U  =  ( PCl `  K
)
Assertion
Ref Expression
pclclN  |-  ( ( K  e.  V  /\  X  C_  A )  -> 
( U `  X
)  e.  S )

Proof of Theorem pclclN
Dummy variables  y 
q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pclfval.a . . 3  |-  A  =  ( Atoms `  K )
2 pclfval.s . . 3  |-  S  =  ( PSubSp `  K )
3 pclfval.c . . 3  |-  U  =  ( PCl `  K
)
41, 2, 3pclvalN 33374 . 2  |-  ( ( K  e.  V  /\  X  C_  A )  -> 
( U `  X
)  =  |^| { y  e.  S  |  X  C_  y } )
51, 2atpsubN 33237 . . . 4  |-  ( K  e.  V  ->  A  e.  S )
6 sseq2 3373 . . . . 5  |-  ( y  =  A  ->  ( X  C_  y  <->  X  C_  A
) )
76intminss 4149 . . . 4  |-  ( ( A  e.  S  /\  X  C_  A )  ->  |^| { y  e.  S  |  X  C_  y } 
C_  A )
85, 7sylan 471 . . 3  |-  ( ( K  e.  V  /\  X  C_  A )  ->  |^| { y  e.  S  |  X  C_  y } 
C_  A )
9 r19.26 2844 . . . . . . . 8  |-  ( A. y  e.  S  (
( X  C_  y  ->  p  e.  y )  /\  ( X  C_  y  ->  q  e.  y ) )  <->  ( A. y  e.  S  ( X  C_  y  ->  p  e.  y )  /\  A. y  e.  S  ( X  C_  y  ->  q  e.  y ) ) )
10 jcab 858 . . . . . . . . 9  |-  ( ( X  C_  y  ->  ( p  e.  y  /\  q  e.  y )
)  <->  ( ( X 
C_  y  ->  p  e.  y )  /\  ( X  C_  y  ->  q  e.  y ) ) )
1110ralbii 2734 . . . . . . . 8  |-  ( A. y  e.  S  ( X  C_  y  ->  (
p  e.  y  /\  q  e.  y )
)  <->  A. y  e.  S  ( ( X  C_  y  ->  p  e.  y )  /\  ( X 
C_  y  ->  q  e.  y ) ) )
12 vex 2970 . . . . . . . . . 10  |-  p  e. 
_V
1312elintrab 4135 . . . . . . . . 9  |-  ( p  e.  |^| { y  e.  S  |  X  C_  y }  <->  A. y  e.  S  ( X  C_  y  ->  p  e.  y )
)
14 vex 2970 . . . . . . . . . 10  |-  q  e. 
_V
1514elintrab 4135 . . . . . . . . 9  |-  ( q  e.  |^| { y  e.  S  |  X  C_  y }  <->  A. y  e.  S  ( X  C_  y  -> 
q  e.  y ) )
1613, 15anbi12i 697 . . . . . . . 8  |-  ( ( p  e.  |^| { y  e.  S  |  X  C_  y }  /\  q  e.  |^| { y  e.  S  |  X  C_  y } )  <->  ( A. y  e.  S  ( X  C_  y  ->  p  e.  y )  /\  A. y  e.  S  ( X  C_  y  ->  q  e.  y ) ) )
179, 11, 163bitr4ri 278 . . . . . . 7  |-  ( ( p  e.  |^| { y  e.  S  |  X  C_  y }  /\  q  e.  |^| { y  e.  S  |  X  C_  y } )  <->  A. y  e.  S  ( X  C_  y  ->  ( p  e.  y  /\  q  e.  y ) ) )
18 simpll1 1027 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K ) q )  /\  r  e.  A
)  /\  y  e.  S )  /\  (
p  e.  y  /\  q  e.  y )
)  ->  K  e.  V )
19 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K ) q )  /\  r  e.  A
)  /\  y  e.  S )  /\  (
p  e.  y  /\  q  e.  y )
)  ->  y  e.  S )
20 simpll3 1029 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K ) q )  /\  r  e.  A
)  /\  y  e.  S )  /\  (
p  e.  y  /\  q  e.  y )
)  ->  r  e.  A )
21 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K ) q )  /\  r  e.  A
)  /\  y  e.  S )  /\  (
p  e.  y  /\  q  e.  y )
)  ->  p  e.  y )
22 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K ) q )  /\  r  e.  A
)  /\  y  e.  S )  /\  (
p  e.  y  /\  q  e.  y )
)  ->  q  e.  y )
23 simpll2 1028 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K ) q )  /\  r  e.  A
)  /\  y  e.  S )  /\  (
p  e.  y  /\  q  e.  y )
)  ->  r ( le `  K ) ( p ( join `  K
) q ) )
24 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( le
`  K )  =  ( le `  K
)
25 eqid 2438 . . . . . . . . . . . . . . 15  |-  ( join `  K )  =  (
join `  K )
2624, 25, 1, 2psubspi2N 33232 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  V  /\  y  e.  S  /\  r  e.  A
)  /\  ( p  e.  y  /\  q  e.  y  /\  r
( le `  K
) ( p (
join `  K )
q ) ) )  ->  r  e.  y )
2718, 19, 20, 21, 22, 23, 26syl33anc 1233 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K ) q )  /\  r  e.  A
)  /\  y  e.  S )  /\  (
p  e.  y  /\  q  e.  y )
)  ->  r  e.  y )
2827ex 434 . . . . . . . . . . . 12  |-  ( ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K
) q )  /\  r  e.  A )  /\  y  e.  S
)  ->  ( (
p  e.  y  /\  q  e.  y )  ->  r  e.  y ) )
2928imim2d 52 . . . . . . . . . . 11  |-  ( ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K
) q )  /\  r  e.  A )  /\  y  e.  S
)  ->  ( ( X  C_  y  ->  (
p  e.  y  /\  q  e.  y )
)  ->  ( X  C_  y  ->  r  e.  y ) ) )
3029ralimdva 2789 . . . . . . . . . 10  |-  ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K
) q )  /\  r  e.  A )  ->  ( A. y  e.  S  ( X  C_  y  ->  ( p  e.  y  /\  q  e.  y ) )  ->  A. y  e.  S  ( X  C_  y  -> 
r  e.  y ) ) )
31 vex 2970 . . . . . . . . . . 11  |-  r  e. 
_V
3231elintrab 4135 . . . . . . . . . 10  |-  ( r  e.  |^| { y  e.  S  |  X  C_  y }  <->  A. y  e.  S  ( X  C_  y  -> 
r  e.  y ) )
3330, 32syl6ibr 227 . . . . . . . . 9  |-  ( ( K  e.  V  /\  r ( le `  K ) ( p ( join `  K
) q )  /\  r  e.  A )  ->  ( A. y  e.  S  ( X  C_  y  ->  ( p  e.  y  /\  q  e.  y ) )  -> 
r  e.  |^| { y  e.  S  |  X  C_  y } ) )
34333exp 1186 . . . . . . . 8  |-  ( K  e.  V  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
( r  e.  A  ->  ( A. y  e.  S  ( X  C_  y  ->  ( p  e.  y  /\  q  e.  y ) )  -> 
r  e.  |^| { y  e.  S  |  X  C_  y } ) ) ) )
3534com24 87 . . . . . . 7  |-  ( K  e.  V  ->  ( A. y  e.  S  ( X  C_  y  -> 
( p  e.  y  /\  q  e.  y ) )  ->  (
r  e.  A  -> 
( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  |^| { y  e.  S  |  X  C_  y } ) ) ) )
3617, 35syl5bi 217 . . . . . 6  |-  ( K  e.  V  ->  (
( p  e.  |^| { y  e.  S  |  X  C_  y }  /\  q  e.  |^| { y  e.  S  |  X  C_  y } )  -> 
( r  e.  A  ->  ( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  |^| { y  e.  S  |  X  C_  y } ) ) ) )
3736ralrimdv 2800 . . . . 5  |-  ( K  e.  V  ->  (
( p  e.  |^| { y  e.  S  |  X  C_  y }  /\  q  e.  |^| { y  e.  S  |  X  C_  y } )  ->  A. r  e.  A  ( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  |^| { y  e.  S  |  X  C_  y } ) ) )
3837ralrimivv 2802 . . . 4  |-  ( K  e.  V  ->  A. p  e.  |^| { y  e.  S  |  X  C_  y } A. q  e. 
|^| { y  e.  S  |  X  C_  y } A. r  e.  A  ( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  |^| { y  e.  S  |  X  C_  y } ) )
3938adantr 465 . . 3  |-  ( ( K  e.  V  /\  X  C_  A )  ->  A. p  e.  |^| { y  e.  S  |  X  C_  y } A. q  e.  |^| { y  e.  S  |  X  C_  y } A. r  e.  A  ( r ( le `  K ) ( p ( join `  K ) q )  ->  r  e.  |^| { y  e.  S  |  X  C_  y } ) )
4024, 25, 1, 2ispsubsp 33229 . . . 4  |-  ( K  e.  V  ->  ( |^| { y  e.  S  |  X  C_  y }  e.  S  <->  ( |^| { y  e.  S  |  X  C_  y }  C_  A  /\  A. p  e. 
|^| { y  e.  S  |  X  C_  y } A. q  e.  |^| { y  e.  S  |  X  C_  y } A. r  e.  A  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  |^| { y  e.  S  |  X  C_  y } ) ) ) )
4140adantr 465 . . 3  |-  ( ( K  e.  V  /\  X  C_  A )  -> 
( |^| { y  e.  S  |  X  C_  y }  e.  S  <->  (
|^| { y  e.  S  |  X  C_  y } 
C_  A  /\  A. p  e.  |^| { y  e.  S  |  X  C_  y } A. q  e.  |^| { y  e.  S  |  X  C_  y } A. r  e.  A  ( r ( le `  K ) ( p ( join `  K ) q )  ->  r  e.  |^| { y  e.  S  |  X  C_  y } ) ) ) )
428, 39, 41mpbir2and 913 . 2  |-  ( ( K  e.  V  /\  X  C_  A )  ->  |^| { y  e.  S  |  X  C_  y }  e.  S )
434, 42eqeltrd 2512 1  |-  ( ( K  e.  V  /\  X  C_  A )  -> 
( U `  X
)  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   {crab 2714    C_ wss 3323   |^|cint 4123   class class class wbr 4287   ` cfv 5413  (class class class)co 6086   lecple 14237   joincjn 15106   Atomscatm 32748   PSubSpcpsubsp 32980   PClcpclN 33371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-psubsp 32987  df-pclN 33372
This theorem is referenced by:  pclunN  33382  pclfinN  33384
  Copyright terms: Public domain W3C validator