MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcfac Structured version   Unicode version

Theorem pcfac 14266
Description: Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcfac  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... M ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
Distinct variable groups:    P, k    k, N    k, M

Proof of Theorem pcfac
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5857 . . . . . . . 8  |-  ( x  =  0  ->  ( ZZ>=
`  x )  =  ( ZZ>= `  0 )
)
2 fveq2 5857 . . . . . . . . . 10  |-  ( x  =  0  ->  ( ! `  x )  =  ( ! ` 
0 ) )
32oveq2d 6291 . . . . . . . . 9  |-  ( x  =  0  ->  ( P  pCnt  ( ! `  x ) )  =  ( P  pCnt  ( ! `  0 )
) )
4 oveq1 6282 . . . . . . . . . . 11  |-  ( x  =  0  ->  (
x  /  ( P ^ k ) )  =  ( 0  / 
( P ^ k
) ) )
54fveq2d 5861 . . . . . . . . . 10  |-  ( x  =  0  ->  ( |_ `  ( x  / 
( P ^ k
) ) )  =  ( |_ `  (
0  /  ( P ^ k ) ) ) )
65sumeq2sdv 13475 . . . . . . . . 9  |-  ( x  =  0  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) ) )
73, 6eqeq12d 2482 . . . . . . . 8  |-  ( x  =  0  ->  (
( P  pCnt  ( ! `  x )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  0 ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) ) ) )
81, 7raleqbidv 3065 . . . . . . 7  |-  ( x  =  0  ->  ( A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) )  <->  A. m  e.  (
ZZ>= `  0 ) ( P  pCnt  ( ! `  0 ) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  (
0  /  ( P ^ k ) ) ) ) )
98imbi2d 316 . . . . . 6  |-  ( x  =  0  ->  (
( P  e.  Prime  ->  A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) ) )  <->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  0 )
( P  pCnt  ( ! `  0 )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) ) ) ) )
10 fveq2 5857 . . . . . . . 8  |-  ( x  =  n  ->  ( ZZ>=
`  x )  =  ( ZZ>= `  n )
)
11 fveq2 5857 . . . . . . . . . 10  |-  ( x  =  n  ->  ( ! `  x )  =  ( ! `  n ) )
1211oveq2d 6291 . . . . . . . . 9  |-  ( x  =  n  ->  ( P  pCnt  ( ! `  x ) )  =  ( P  pCnt  ( ! `  n )
) )
13 oveq1 6282 . . . . . . . . . . 11  |-  ( x  =  n  ->  (
x  /  ( P ^ k ) )  =  ( n  / 
( P ^ k
) ) )
1413fveq2d 5861 . . . . . . . . . 10  |-  ( x  =  n  ->  ( |_ `  ( x  / 
( P ^ k
) ) )  =  ( |_ `  (
n  /  ( P ^ k ) ) ) )
1514sumeq2sdv 13475 . . . . . . . . 9  |-  ( x  =  n  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) )
1612, 15eqeq12d 2482 . . . . . . . 8  |-  ( x  =  n  ->  (
( P  pCnt  ( ! `  x )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  n ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) )
1710, 16raleqbidv 3065 . . . . . . 7  |-  ( x  =  n  ->  ( A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) )  <->  A. m  e.  (
ZZ>= `  n ) ( P  pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) ) ) )
1817imbi2d 316 . . . . . 6  |-  ( x  =  n  ->  (
( P  e.  Prime  ->  A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) ) )  <->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  n )
( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) ) )
19 fveq2 5857 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  ( ZZ>=
`  x )  =  ( ZZ>= `  ( n  +  1 ) ) )
20 fveq2 5857 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  ( ! `  x )  =  ( ! `  ( n  +  1
) ) )
2120oveq2d 6291 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  ( P  pCnt  ( ! `  x ) )  =  ( P  pCnt  ( ! `  ( n  +  1 ) ) ) )
22 oveq1 6282 . . . . . . . . . . 11  |-  ( x  =  ( n  + 
1 )  ->  (
x  /  ( P ^ k ) )  =  ( ( n  +  1 )  / 
( P ^ k
) ) )
2322fveq2d 5861 . . . . . . . . . 10  |-  ( x  =  ( n  + 
1 )  ->  ( |_ `  ( x  / 
( P ^ k
) ) )  =  ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) ) )
2423sumeq2sdv 13475 . . . . . . . . 9  |-  ( x  =  ( n  + 
1 )  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) )
2521, 24eqeq12d 2482 . . . . . . . 8  |-  ( x  =  ( n  + 
1 )  ->  (
( P  pCnt  ( ! `  x )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) )
2619, 25raleqbidv 3065 . . . . . . 7  |-  ( x  =  ( n  + 
1 )  ->  ( A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) )  <->  A. m  e.  (
ZZ>= `  ( n  + 
1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) ) ) )
2726imbi2d 316 . . . . . 6  |-  ( x  =  ( n  + 
1 )  ->  (
( P  e.  Prime  ->  A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) ) )  <->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) ) )
28 fveq2 5857 . . . . . . . 8  |-  ( x  =  N  ->  ( ZZ>=
`  x )  =  ( ZZ>= `  N )
)
29 fveq2 5857 . . . . . . . . . 10  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
3029oveq2d 6291 . . . . . . . . 9  |-  ( x  =  N  ->  ( P  pCnt  ( ! `  x ) )  =  ( P  pCnt  ( ! `  N )
) )
31 oveq1 6282 . . . . . . . . . . 11  |-  ( x  =  N  ->  (
x  /  ( P ^ k ) )  =  ( N  / 
( P ^ k
) ) )
3231fveq2d 5861 . . . . . . . . . 10  |-  ( x  =  N  ->  ( |_ `  ( x  / 
( P ^ k
) ) )  =  ( |_ `  ( N  /  ( P ^
k ) ) ) )
3332sumeq2sdv 13475 . . . . . . . . 9  |-  ( x  =  N  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) ) )
3430, 33eqeq12d 2482 . . . . . . . 8  |-  ( x  =  N  ->  (
( P  pCnt  ( ! `  x )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( x  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  N ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) )
3528, 34raleqbidv 3065 . . . . . . 7  |-  ( x  =  N  ->  ( A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) )  <->  A. m  e.  (
ZZ>= `  N ) ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  ( N  /  ( P ^
k ) ) ) ) )
3635imbi2d 316 . . . . . 6  |-  ( x  =  N  ->  (
( P  e.  Prime  ->  A. m  e.  ( ZZ>=
`  x ) ( P  pCnt  ( ! `  x ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
x  /  ( P ^ k ) ) ) )  <->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  N )
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) ) )
37 fzfid 12039 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  ( 1 ... m )  e. 
Fin )
38 sumz 13493 . . . . . . . . . 10  |-  ( ( ( 1 ... m
)  C_  ( ZZ>= ` 
1 )  \/  (
1 ... m )  e. 
Fin )  ->  sum_ k  e.  ( 1 ... m
) 0  =  0 )
3938olcs 395 . . . . . . . . 9  |-  ( ( 1 ... m )  e.  Fin  ->  sum_ k  e.  ( 1 ... m
) 0  =  0 )
4037, 39syl 16 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  sum_ k  e.  ( 1 ... m
) 0  =  0 )
41 0nn0 10799 . . . . . . . . . . 11  |-  0  e.  NN0
4241a1i 11 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  k  e.  ( 1 ... m ) )  ->  0  e.  NN0 )
43 elfznn 11703 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... m )  ->  k  e.  NN )
4443nnnn0d 10841 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... m )  ->  k  e.  NN0 )
45 nn0uz 11105 . . . . . . . . . . . 12  |-  NN0  =  ( ZZ>= `  0 )
4644, 45syl6eleq 2558 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... m )  ->  k  e.  ( ZZ>= `  0 )
)
4746adantl 466 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  k  e.  ( 1 ... m ) )  ->  k  e.  (
ZZ>= `  0 ) )
48 simpll 753 . . . . . . . . . 10  |-  ( ( ( P  e.  Prime  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  k  e.  ( 1 ... m ) )  ->  P  e.  Prime )
49 pcfaclem 14265 . . . . . . . . . 10  |-  ( ( 0  e.  NN0  /\  k  e.  ( ZZ>= ` 
0 )  /\  P  e.  Prime )  ->  ( |_ `  ( 0  / 
( P ^ k
) ) )  =  0 )
5042, 47, 48, 49syl3anc 1223 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  m  e.  ( ZZ>= ` 
0 ) )  /\  k  e.  ( 1 ... m ) )  ->  ( |_ `  ( 0  /  ( P ^ k ) ) )  =  0 )
5150sumeq2dv 13474 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... m
) 0 )
52 fac0 12311 . . . . . . . . . . 11  |-  ( ! `
 0 )  =  1
5352oveq2i 6286 . . . . . . . . . 10  |-  ( P 
pCnt  ( ! ` 
0 ) )  =  ( P  pCnt  1
)
54 pc1 14227 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( P 
pCnt  1 )  =  0 )
5553, 54syl5eq 2513 . . . . . . . . 9  |-  ( P  e.  Prime  ->  ( P 
pCnt  ( ! ` 
0 ) )  =  0 )
5655adantr 465 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  ( P  pCnt  ( ! `  0
) )  =  0 )
5740, 51, 563eqtr4rd 2512 . . . . . . 7  |-  ( ( P  e.  Prime  /\  m  e.  ( ZZ>= `  0 )
)  ->  ( P  pCnt  ( ! `  0
) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  ( 0  /  ( P ^
k ) ) ) )
5857ralrimiva 2871 . . . . . 6  |-  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  0 )
( P  pCnt  ( ! `  0 )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( 0  /  ( P ^ k ) ) ) )
59 nn0z 10876 . . . . . . . . . . . 12  |-  ( n  e.  NN0  ->  n  e.  ZZ )
6059adantr 465 . . . . . . . . . . 11  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  ->  n  e.  ZZ )
61 uzid 11085 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  n  e.  ( ZZ>= `  n )
)
62 peano2uz 11123 . . . . . . . . . . 11  |-  ( n  e.  ( ZZ>= `  n
)  ->  ( n  +  1 )  e.  ( ZZ>= `  n )
)
6360, 61, 623syl 20 . . . . . . . . . 10  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  -> 
( n  +  1 )  e.  ( ZZ>= `  n ) )
64 uzss 11091 . . . . . . . . . 10  |-  ( ( n  +  1 )  e.  ( ZZ>= `  n
)  ->  ( ZZ>= `  ( n  +  1
) )  C_  ( ZZ>=
`  n ) )
65 ssralv 3557 . . . . . . . . . 10  |-  ( (
ZZ>= `  ( n  + 
1 ) )  C_  ( ZZ>= `  n )  ->  ( A. m  e.  ( ZZ>= `  n )
( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) )
6663, 64, 653syl 20 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  -> 
( A. m  e.  ( ZZ>= `  n )
( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) )
67 oveq1 6282 . . . . . . . . . . 11  |-  ( ( P  pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  ->  ( ( P  pCnt  ( ! `  n ) )  +  ( P  pCnt  (
n  +  1 ) ) )  =  (
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  +  ( P 
pCnt  ( n  + 
1 ) ) ) )
68 simpll 753 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  n  e.  NN0 )
69 facp1 12313 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ! `
 ( n  + 
1 ) )  =  ( ( ! `  n )  x.  (
n  +  1 ) ) )
7068, 69syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ! `  ( n  +  1
) )  =  ( ( ! `  n
)  x.  ( n  +  1 ) ) )
7170oveq2d 6291 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  ( P 
pCnt  ( ( ! `
 n )  x.  ( n  +  1 ) ) ) )
72 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  P  e.  Prime )
73 faccl 12318 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( ! `
 n )  e.  NN )
74 nnz 10875 . . . . . . . . . . . . . . . 16  |-  ( ( ! `  n )  e.  NN  ->  ( ! `  n )  e.  ZZ )
75 nnne0 10557 . . . . . . . . . . . . . . . 16  |-  ( ( ! `  n )  e.  NN  ->  ( ! `  n )  =/=  0 )
7674, 75jca 532 . . . . . . . . . . . . . . 15  |-  ( ( ! `  n )  e.  NN  ->  (
( ! `  n
)  e.  ZZ  /\  ( ! `  n )  =/=  0 ) )
7768, 73, 763syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( ! `
 n )  e.  ZZ  /\  ( ! `
 n )  =/=  0 ) )
78 nn0p1nn 10824 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
79 nnz 10875 . . . . . . . . . . . . . . . 16  |-  ( ( n  +  1 )  e.  NN  ->  (
n  +  1 )  e.  ZZ )
80 nnne0 10557 . . . . . . . . . . . . . . . 16  |-  ( ( n  +  1 )  e.  NN  ->  (
n  +  1 )  =/=  0 )
8179, 80jca 532 . . . . . . . . . . . . . . 15  |-  ( ( n  +  1 )  e.  NN  ->  (
( n  +  1 )  e.  ZZ  /\  ( n  +  1
)  =/=  0 ) )
8268, 78, 813syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( n  +  1 )  e.  ZZ  /\  ( n  +  1 )  =/=  0 ) )
83 pcmul 14223 . . . . . . . . . . . . . 14  |-  ( ( P  e.  Prime  /\  (
( ! `  n
)  e.  ZZ  /\  ( ! `  n )  =/=  0 )  /\  ( ( n  + 
1 )  e.  ZZ  /\  ( n  +  1 )  =/=  0 ) )  ->  ( P  pCnt  ( ( ! `  n )  x.  (
n  +  1 ) ) )  =  ( ( P  pCnt  ( ! `  n )
)  +  ( P 
pCnt  ( n  + 
1 ) ) ) )
8472, 77, 82, 83syl3anc 1223 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( ( ! `  n
)  x.  ( n  +  1 ) ) )  =  ( ( P  pCnt  ( ! `  n ) )  +  ( P  pCnt  (
n  +  1 ) ) ) )
8571, 84eqtr2d 2502 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P 
pCnt  ( ! `  n ) )  +  ( P  pCnt  (
n  +  1 ) ) )  =  ( P  pCnt  ( ! `  ( n  +  1 ) ) ) )
8668adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  n  e.  NN0 )
8786nn0zd 10953 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  n  e.  ZZ )
88 prmnn 14068 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  Prime  ->  P  e.  NN )
8988ad2antlr 726 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  P  e.  NN )
90 nnexpcl 12135 . . . . . . . . . . . . . . . . . 18  |-  ( ( P  e.  NN  /\  k  e.  NN0 )  -> 
( P ^ k
)  e.  NN )
9189, 44, 90syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( P ^ k )  e.  NN )
92 fldivp1 14264 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ZZ  /\  ( P ^ k )  e.  NN )  -> 
( ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  if ( ( P ^ k ) 
||  ( n  + 
1 ) ,  1 ,  0 ) )
9387, 91, 92syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  if ( ( P ^ k ) 
||  ( n  + 
1 ) ,  1 ,  0 ) )
94 elfzuz 11673 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  ( 1 ... m )  ->  k  e.  ( ZZ>= `  1 )
)
9568, 78syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  e.  NN )
9672, 95pccld 14222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  e.  NN0 )
9796nn0zd 10953 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  e.  ZZ )
98 elfz5 11669 . . . . . . . . . . . . . . . . . . 19  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( P  pCnt  ( n  + 
1 ) )  e.  ZZ )  ->  (
k  e.  ( 1 ... ( P  pCnt  ( n  +  1 ) ) )  <->  k  <_  ( P  pCnt  ( n  +  1 ) ) ) )
9994, 97, 98syl2anr 478 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
k  e.  ( 1 ... ( P  pCnt  ( n  +  1 ) ) )  <->  k  <_  ( P  pCnt  ( n  +  1 ) ) ) )
100 simpllr 758 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  P  e.  Prime )
10186, 78syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
n  +  1 )  e.  NN )
102101nnzd 10954 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
n  +  1 )  e.  ZZ )
10344adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  k  e.  NN0 )
104 pcdvdsb 14240 . . . . . . . . . . . . . . . . . . 19  |-  ( ( P  e.  Prime  /\  (
n  +  1 )  e.  ZZ  /\  k  e.  NN0 )  ->  (
k  <_  ( P  pCnt  ( n  +  1 ) )  <->  ( P ^ k )  ||  ( n  +  1
) ) )
105100, 102, 103, 104syl3anc 1223 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
k  <_  ( P  pCnt  ( n  +  1 ) )  <->  ( P ^ k )  ||  ( n  +  1
) ) )
10699, 105bitr2d 254 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
( P ^ k
)  ||  ( n  +  1 )  <->  k  e.  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ) )
107106ifbid 3954 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  if ( ( P ^
k )  ||  (
n  +  1 ) ,  1 ,  0 )  =  if ( k  e.  ( 1 ... ( P  pCnt  ( n  +  1 ) ) ) ,  1 ,  0 ) )
10893, 107eqtrd 2501 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  if ( k  e.  ( 1 ... ( P  pCnt  (
n  +  1 ) ) ) ,  1 ,  0 ) )
109108sumeq2dv 13474 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) ( ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  sum_ k  e.  ( 1 ... m ) if ( k  e.  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ,  1 ,  0 ) )
110 fzfid 12039 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( 1 ... m )  e.  Fin )
11168nn0red 10842 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  n  e.  RR )
112 peano2re 9741 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
113111, 112syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  e.  RR )
114113adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
n  +  1 )  e.  RR )
115114, 91nndivred 10573 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
( n  +  1 )  /  ( P ^ k ) )  e.  RR )
116115flcld 11892 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( |_ `  ( ( n  +  1 )  / 
( P ^ k
) ) )  e.  ZZ )
117116zcnd 10956 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( |_ `  ( ( n  +  1 )  / 
( P ^ k
) ) )  e.  CC )
118111adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  n  e.  RR )
119118, 91nndivred 10573 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  (
n  /  ( P ^ k ) )  e.  RR )
120119flcld 11892 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( |_ `  ( n  / 
( P ^ k
) ) )  e.  ZZ )
121120zcnd 10956 . . . . . . . . . . . . . . 15  |-  ( ( ( ( n  e. 
NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>= `  ( n  +  1 ) ) )  /\  k  e.  ( 1 ... m
) )  ->  ( |_ `  ( n  / 
( P ^ k
) ) )  e.  CC )
122110, 117, 121fsumsub 13552 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) ( ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  ( |_
`  ( n  / 
( P ^ k
) ) ) )  =  ( sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) ) )
123 fzfi 12038 . . . . . . . . . . . . . . . 16  |-  ( 1 ... m )  e. 
Fin
12496nn0red 10842 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  e.  RR )
125 eluzelz 11080 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  ( ZZ>= `  (
n  +  1 ) )  ->  m  e.  ZZ )
126125adantl 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  m  e.  ZZ )
127126zred 10955 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  m  e.  RR )
128 prmuz2 14083 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
129128ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  P  e.  (
ZZ>= `  2 ) )
13095nnnn0d 10841 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  e.  NN0 )
131 bernneq3 12249 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
n  +  1 )  e.  NN0 )  -> 
( n  +  1 )  <  ( P ^ ( n  + 
1 ) ) )
132129, 130, 131syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  <  ( P ^ ( n  + 
1 ) ) )
133124, 113letrid 9723 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P 
pCnt  ( n  + 
1 ) )  <_ 
( n  +  1 )  \/  ( n  +  1 )  <_ 
( P  pCnt  (
n  +  1 ) ) ) )
134133ord 377 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( -.  ( P  pCnt  ( n  + 
1 ) )  <_ 
( n  +  1 )  ->  ( n  +  1 )  <_ 
( P  pCnt  (
n  +  1 ) ) ) )
13595nnzd 10954 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  e.  ZZ )
136 pcdvdsb 14240 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  Prime  /\  (
n  +  1 )  e.  ZZ  /\  (
n  +  1 )  e.  NN0 )  -> 
( ( n  + 
1 )  <_  ( P  pCnt  ( n  + 
1 ) )  <->  ( P ^ ( n  + 
1 ) )  ||  ( n  +  1
) ) )
13772, 135, 130, 136syl3anc 1223 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( n  +  1 )  <_ 
( P  pCnt  (
n  +  1 ) )  <->  ( P ^
( n  +  1 ) )  ||  (
n  +  1 ) ) )
13889, 130nnexpcld 12286 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P ^
( n  +  1 ) )  e.  NN )
139138nnzd 10954 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P ^
( n  +  1 ) )  e.  ZZ )
140 dvdsle 13879 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( P ^ (
n  +  1 ) )  e.  ZZ  /\  ( n  +  1
)  e.  NN )  ->  ( ( P ^ ( n  + 
1 ) )  ||  ( n  +  1
)  ->  ( P ^ ( n  + 
1 ) )  <_ 
( n  +  1 ) ) )
141139, 95, 140syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P ^ ( n  + 
1 ) )  ||  ( n  +  1
)  ->  ( P ^ ( n  + 
1 ) )  <_ 
( n  +  1 ) ) )
142138nnred 10540 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P ^
( n  +  1 ) )  e.  RR )
143142, 113lenltd 9719 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P ^ ( n  + 
1 ) )  <_ 
( n  +  1 )  <->  -.  ( n  +  1 )  < 
( P ^ (
n  +  1 ) ) ) )
144141, 143sylibd 214 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P ^ ( n  + 
1 ) )  ||  ( n  +  1
)  ->  -.  (
n  +  1 )  <  ( P ^
( n  +  1 ) ) ) )
145137, 144sylbid 215 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( n  +  1 )  <_ 
( P  pCnt  (
n  +  1 ) )  ->  -.  (
n  +  1 )  <  ( P ^
( n  +  1 ) ) ) )
146134, 145syld 44 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( -.  ( P  pCnt  ( n  + 
1 ) )  <_ 
( n  +  1 )  ->  -.  (
n  +  1 )  <  ( P ^
( n  +  1 ) ) ) )
147132, 146mt4d 138 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  <_  ( n  +  1 ) )
148 eluzle 11083 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( ZZ>= `  (
n  +  1 ) )  ->  ( n  +  1 )  <_  m )
149148adantl 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( n  + 
1 )  <_  m
)
150124, 113, 127, 147, 149letrd 9727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  <_  m )
151 eluz 11084 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  pCnt  (
n  +  1 ) )  e.  ZZ  /\  m  e.  ZZ )  ->  ( m  e.  (
ZZ>= `  ( P  pCnt  ( n  +  1 ) ) )  <->  ( P  pCnt  ( n  +  1 ) )  <_  m
) )
15297, 126, 151syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( m  e.  ( ZZ>= `  ( P  pCnt  ( n  +  1 ) ) )  <->  ( P  pCnt  ( n  +  1 ) )  <_  m
) )
153150, 152mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  m  e.  (
ZZ>= `  ( P  pCnt  ( n  +  1 ) ) ) )
154 fzss2 11712 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  ( ZZ>= `  ( P  pCnt  ( n  + 
1 ) ) )  ->  ( 1 ... ( P  pCnt  (
n  +  1 ) ) )  C_  (
1 ... m ) )
155153, 154syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( 1 ... ( P  pCnt  (
n  +  1 ) ) )  C_  (
1 ... m ) )
156 sumhash 14263 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... m
)  e.  Fin  /\  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) 
C_  ( 1 ... m ) )  ->  sum_ k  e.  ( 1 ... m ) if ( k  e.  ( 1 ... ( P 
pCnt  ( n  + 
1 ) ) ) ,  1 ,  0 )  =  ( # `  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ) )
157123, 155, 156sylancr 663 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) if ( k  e.  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ,  1 ,  0 )  =  ( # `  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ) )
158 hashfz1 12374 . . . . . . . . . . . . . . . 16  |-  ( ( P  pCnt  ( n  +  1 ) )  e.  NN0  ->  ( # `  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) )  =  ( P 
pCnt  ( n  + 
1 ) ) )
15996, 158syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( # `  (
1 ... ( P  pCnt  ( n  +  1 ) ) ) )  =  ( P  pCnt  (
n  +  1 ) ) )
160157, 159eqtrd 2501 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) if ( k  e.  ( 1 ... ( P  pCnt  ( n  + 
1 ) ) ) ,  1 ,  0 )  =  ( P 
pCnt  ( n  + 
1 ) ) )
161109, 122, 1603eqtr3d 2509 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) )  -  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) ) )  =  ( P  pCnt  ( n  +  1 ) ) )
162110, 117fsumcl 13504 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) )  e.  CC )
163110, 121fsumcl 13504 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  e.  CC )
164124recnd 9611 . . . . . . . . . . . . . 14  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( P  pCnt  ( n  +  1 ) )  e.  CC )
165162, 163, 164subaddd 9937 . . . . . . . . . . . . 13  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( sum_ k  e.  ( 1 ... m ) ( |_ `  ( ( n  +  1 )  /  ( P ^
k ) ) )  -  sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) ) )  =  ( P  pCnt  ( n  +  1 ) )  <-> 
( sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  +  ( P 
pCnt  ( n  + 
1 ) ) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) ) ) )
166161, 165mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  +  ( P 
pCnt  ( n  + 
1 ) ) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  (
( n  +  1 )  /  ( P ^ k ) ) ) )
16785, 166eqeq12d 2482 . . . . . . . . . . 11  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( ( P  pCnt  ( ! `  n ) )  +  ( P  pCnt  (
n  +  1 ) ) )  =  (
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  +  ( P 
pCnt  ( n  + 
1 ) ) )  <-> 
( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) )
16867, 167syl5ib 219 . . . . . . . . . 10  |-  ( ( ( n  e.  NN0  /\  P  e.  Prime )  /\  m  e.  ( ZZ>=
`  ( n  + 
1 ) ) )  ->  ( ( P 
pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  ->  ( P  pCnt  ( ! `  (
n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m ) ( |_ `  ( ( n  +  1 )  /  ( P ^
k ) ) ) ) )
169168ralimdva 2865 . . . . . . . . 9  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  -> 
( A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) )
17066, 169syld 44 . . . . . . . 8  |-  ( ( n  e.  NN0  /\  P  e.  Prime )  -> 
( A. m  e.  ( ZZ>= `  n )
( P  pCnt  ( ! `  n )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) )
171170ex 434 . . . . . . 7  |-  ( n  e.  NN0  ->  ( P  e.  Prime  ->  ( A. m  e.  ( ZZ>= `  n ) ( P 
pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) )  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) ) )
172171a2d 26 . . . . . 6  |-  ( n  e.  NN0  ->  ( ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  n ) ( P 
pCnt  ( ! `  n ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  (
n  /  ( P ^ k ) ) ) )  ->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  ( n  +  1 ) ) ( P  pCnt  ( ! `  ( n  +  1 ) ) )  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( ( n  + 
1 )  /  ( P ^ k ) ) ) ) ) )
1739, 18, 27, 36, 58, 172nn0ind 10946 . . . . 5  |-  ( N  e.  NN0  ->  ( P  e.  Prime  ->  A. m  e.  ( ZZ>= `  N )
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) )
174173imp 429 . . . 4  |-  ( ( N  e.  NN0  /\  P  e.  Prime )  ->  A. m  e.  ( ZZ>=
`  N ) ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
175 oveq2 6283 . . . . . . 7  |-  ( m  =  M  ->  (
1 ... m )  =  ( 1 ... M
) )
176175sumeq1d 13472 . . . . . 6  |-  ( m  =  M  ->  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) )  =  sum_ k  e.  ( 1 ... M
) ( |_ `  ( N  /  ( P ^ k ) ) ) )
177176eqeq2d 2474 . . . . 5  |-  ( m  =  M  ->  (
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... m
) ( |_ `  ( N  /  ( P ^ k ) ) )  <->  ( P  pCnt  ( ! `  N ) )  =  sum_ k  e.  ( 1 ... M
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) )
178177rspcv 3203 . . . 4  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( A. m  e.  ( ZZ>= `  N ) ( P 
pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... m ) ( |_ `  ( N  /  ( P ^
k ) ) )  ->  ( P  pCnt  ( ! `  N ) )  =  sum_ k  e.  ( 1 ... M
) ( |_ `  ( N  /  ( P ^ k ) ) ) ) )
179174, 178syl5 32 . . 3  |-  ( M  e.  ( ZZ>= `  N
)  ->  ( ( N  e.  NN0  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... M ) ( |_ `  ( N  /  ( P ^
k ) ) ) ) )
1801793impib 1189 . 2  |-  ( ( M  e.  ( ZZ>= `  N )  /\  N  e.  NN0  /\  P  e. 
Prime )  ->  ( P 
pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... M ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
1811803com12 1195 1  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... M ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807    C_ wss 3469   ifcif 3932   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   Fincfn 7506   RRcr 9480   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9794    / cdiv 10195   NNcn 10525   2c2 10574   NN0cn0 10784   ZZcz 10853   ZZ>=cuz 11071   ...cfz 11661   |_cfl 11884   ^cexp 12122   !cfa 12308   #chash 12360   sum_csu 13457    || cdivides 13836   Primecprime 14065    pCnt cpc 14208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-oi 7924  df-card 8309  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-fac 12309  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-clim 13260  df-sum 13458  df-dvds 13837  df-gcd 13993  df-prm 14066  df-pc 14209
This theorem is referenced by:  pcbc  14267
  Copyright terms: Public domain W3C validator