MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pceu Structured version   Unicode version

Theorem pceu 14229
Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
Assertion
Ref Expression
pceu  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
Distinct variable groups:    x, n, y, z, N    P, n, x, y, z    z, S   
z, T
Allowed substitution hints:    S( x, y, n)    T( x, y, n)

Proof of Theorem pceu
Dummy variables  s 
t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 755 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  e.  QQ )
2 elq 11184 . . . 4  |-  ( N  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y ) )
31, 2sylib 196 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  / 
y ) )
4 ovex 6309 . . . . . . . . 9  |-  ( S  -  T )  e. 
_V
5 biidd 237 . . . . . . . . 9  |-  ( z  =  ( S  -  T )  ->  ( N  =  ( x  /  y )  <->  N  =  ( x  /  y
) ) )
64, 5ceqsexv 3150 . . . . . . . 8  |-  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  N  =  ( x  /  y
) )
7 exancom 1648 . . . . . . . 8  |-  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
86, 7bitr3i 251 . . . . . . 7  |-  ( N  =  ( x  / 
y )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
98rexbii 2965 . . . . . 6  |-  ( E. y  e.  NN  N  =  ( x  / 
y )  <->  E. y  e.  NN  E. z ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
10 rexcom4 3133 . . . . . 6  |-  ( E. y  e.  NN  E. z ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  <->  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) ) )
119, 10bitri 249 . . . . 5  |-  ( E. y  e.  NN  N  =  ( x  / 
y )  <->  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) ) )
1211rexbii 2965 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  / 
y )  <->  E. x  e.  ZZ  E. z E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
13 rexcom4 3133 . . . 4  |-  ( E. x  e.  ZZ  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
1412, 13bitri 249 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  / 
y )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
153, 14sylib 196 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
16 pcval.1 . . . . . . . . . . 11  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
17 pcval.2 . . . . . . . . . . 11  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
18 eqid 2467 . . . . . . . . . . 11  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
19 eqid 2467 . . . . . . . . . . 11  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
20 simp11l 1107 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  P  e.  Prime )
21 simp11r 1108 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =/=  0
)
22 simp12 1027 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
23 simp13l 1111 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =  ( x  /  y ) )
24 simp2 997 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
25 simp3l 1024 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =  ( s  /  t ) )
2616, 17, 18, 19, 20, 21, 22, 23, 24, 25pceulem 14228 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( S  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )
27 simp13r 1112 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  z  =  ( S  -  T ) )
28 simp3r 1025 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )
2926, 27, 283eqtr4d 2518 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  z  =  w )
30293exp 1195 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  ->  ( ( s  e.  ZZ  /\  t  e.  NN )  ->  (
( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) )
3130rexlimdvv 2961 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) )
32313exp 1195 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  =/=  0 )  ->  (
( x  e.  ZZ  /\  y  e.  NN )  ->  ( ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) )  -> 
( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) ) )
3332adantrl 715 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( ( x  e.  ZZ  /\  y  e.  NN )  ->  (
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) ) )
3433rexlimdvv 2961 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) )  -> 
z  =  w ) ) )
3534impd 431 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) )
3635alrimivv 1696 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  A. z A. w ( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) )
37 eqeq1 2471 . . . . . 6  |-  ( z  =  w  ->  (
z  =  ( S  -  T )  <->  w  =  ( S  -  T
) ) )
3837anbi2d 703 . . . . 5  |-  ( z  =  w  ->  (
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  ( N  =  ( x  /  y
)  /\  w  =  ( S  -  T
) ) ) )
39382rexbidv 2980 . . . 4  |-  ( z  =  w  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  w  =  ( S  -  T
) ) ) )
40 oveq1 6291 . . . . . . . . 9  |-  ( x  =  s  ->  (
x  /  y )  =  ( s  / 
y ) )
4140eqeq2d 2481 . . . . . . . 8  |-  ( x  =  s  ->  ( N  =  ( x  /  y )  <->  N  =  ( s  /  y
) ) )
42 breq2 4451 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  (
( P ^ n
)  ||  x  <->  ( P ^ n )  ||  s ) )
4342rabbidv 3105 . . . . . . . . . . . 12  |-  ( x  =  s  ->  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  s }
)
4443supeq1d 7906 . . . . . . . . . . 11  |-  ( x  =  s  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  ) )
4516, 44syl5eq 2520 . . . . . . . . . 10  |-  ( x  =  s  ->  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  ) )
4645oveq1d 6299 . . . . . . . . 9  |-  ( x  =  s  ->  ( S  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  T ) )
4746eqeq2d 2481 . . . . . . . 8  |-  ( x  =  s  ->  (
w  =  ( S  -  T )  <->  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) )
4841, 47anbi12d 710 . . . . . . 7  |-  ( x  =  s  ->  (
( N  =  ( x  /  y )  /\  w  =  ( S  -  T ) )  <->  ( N  =  ( s  /  y
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) ) )
4948rexbidv 2973 . . . . . 6  |-  ( x  =  s  ->  ( E. y  e.  NN  ( N  =  (
x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. y  e.  NN  ( N  =  (
s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) ) )
50 oveq2 6292 . . . . . . . . 9  |-  ( y  =  t  ->  (
s  /  y )  =  ( s  / 
t ) )
5150eqeq2d 2481 . . . . . . . 8  |-  ( y  =  t  ->  ( N  =  ( s  /  y )  <->  N  =  ( s  /  t
) ) )
52 breq2 4451 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( P ^ n
)  ||  y  <->  ( P ^ n )  ||  t ) )
5352rabbidv 3105 . . . . . . . . . . . 12  |-  ( y  =  t  ->  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  t }
)
5453supeq1d 7906 . . . . . . . . . . 11  |-  ( y  =  t  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) )
5517, 54syl5eq 2520 . . . . . . . . . 10  |-  ( y  =  t  ->  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) )
5655oveq2d 6300 . . . . . . . . 9  |-  ( y  =  t  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) )
5756eqeq2d 2481 . . . . . . . 8  |-  ( y  =  t  ->  (
w  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T )  <-> 
w  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
5851, 57anbi12d 710 . . . . . . 7  |-  ( y  =  t  ->  (
( N  =  ( s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) )  <->  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
5958cbvrexv 3089 . . . . . 6  |-  ( E. y  e.  NN  ( N  =  ( s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  T ) )  <->  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
6049, 59syl6bb 261 . . . . 5  |-  ( x  =  s  ->  ( E. y  e.  NN  ( N  =  (
x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. t  e.  NN  ( N  =  (
s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
6160cbvrexv 3089 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
6239, 61syl6bb 261 . . 3  |-  ( z  =  w  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
6362eu4 2340 . 2  |-  ( E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  <->  ( E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  /\  A. z A. w ( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) ) )
6415, 36, 63sylanbrc 664 1  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379   E.wex 1596    e. wcel 1767   E!weu 2275    =/= wne 2662   E.wrex 2815   {crab 2818   class class class wbr 4447  (class class class)co 6284   supcsup 7900   RRcr 9491   0cc0 9492    < clt 9628    - cmin 9805    / cdiv 10206   NNcn 10536   NN0cn0 10795   ZZcz 10864   QQcq 11182   ^cexp 12134    || cdivides 13847   Primecprime 14076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-2o 7131  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-rp 11221  df-fl 11897  df-mod 11965  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-dvds 13848  df-gcd 14004  df-prm 14077
This theorem is referenced by:  pczpre  14230  pcdiv  14235
  Copyright terms: Public domain W3C validator