MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcdvdstr Structured version   Unicode version

Theorem pcdvdstr 14424
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcdvdstr  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )

Proof of Theorem pcdvdstr
StepHypRef Expression
1 0z 10814 . . . . . . 7  |-  0  e.  ZZ
2 zq 11129 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
31, 2ax-mp 5 . . . . . 6  |-  0  e.  QQ
4 pcxcl 14409 . . . . . 6  |-  ( ( P  e.  Prime  /\  0  e.  QQ )  ->  ( P  pCnt  0 )  e. 
RR* )
53, 4mpan2 669 . . . . 5  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  e. 
RR* )
6 xrleid 11299 . . . . 5  |-  ( ( P  pCnt  0 )  e.  RR*  ->  ( P 
pCnt  0 )  <_ 
( P  pCnt  0
) )
75, 6syl 16 . . . 4  |-  ( P  e.  Prime  ->  ( P 
pCnt  0 )  <_ 
( P  pCnt  0
) )
87ad2antrr 723 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  0 )  <_  ( P  pCnt  0 ) )
9 simpr 459 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  A  = 
0 )
109oveq2d 6234 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  A )  =  ( P  pCnt  0 ) )
11 simplr3 1038 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  A  ||  B
)
129, 11eqbrtrrd 4406 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  0  ||  B )
13 simplr2 1037 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  B  e.  ZZ )
14 0dvds 14029 . . . . . 6  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
1513, 14syl 16 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( 0 
||  B  <->  B  = 
0 ) )
1612, 15mpbid 210 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  B  = 
0 )
1716oveq2d 6234 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  B )  =  ( P  pCnt  0 ) )
188, 10, 173brtr4d 4414 . 2  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =  0 )  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )
19 simpll 751 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  P  e.  Prime )
20 simplr1 1036 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  A  e.  ZZ )
21 simpr 459 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  A  =/=  0 )
22 pczdvds 14411 . . . . 5  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P ^ ( P  pCnt  A ) ) 
||  A )
2319, 20, 21, 22syl12anc 1224 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  ||  A
)
24 simplr3 1038 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  A  ||  B
)
25 prmnn 14245 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
2619, 25syl 16 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  P  e.  NN )
27 pczcl 14397 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( P  pCnt  A
)  e.  NN0 )
2819, 20, 21, 27syl12anc 1224 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P  pCnt  A )  e.  NN0 )
2926, 28nnexpcld 12256 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  e.  NN )
3029nnzd 10905 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  e.  ZZ )
31 simplr2 1037 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  B  e.  ZZ )
32 dvdstr 14043 . . . . 5  |-  ( ( ( P ^ ( P  pCnt  A ) )  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( P ^
( P  pCnt  A
) )  ||  A  /\  A  ||  B )  ->  ( P ^
( P  pCnt  A
) )  ||  B
) )
3330, 20, 31, 32syl3anc 1226 . . . 4  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( (
( P ^ ( P  pCnt  A ) ) 
||  A  /\  A  ||  B )  ->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
3423, 24, 33mp2and 677 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P ^ ( P  pCnt  A ) )  ||  B
)
35 pcdvdsb 14417 . . . 4  |-  ( ( P  e.  Prime  /\  B  e.  ZZ  /\  ( P 
pCnt  A )  e.  NN0 )  ->  ( ( P 
pCnt  A )  <_  ( P  pCnt  B )  <->  ( P ^ ( P  pCnt  A ) )  ||  B
) )
3619, 31, 28, 35syl3anc 1226 . . 3  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( ( P  pCnt  A )  <_ 
( P  pCnt  B
)  <->  ( P ^
( P  pCnt  A
) )  ||  B
) )
3734, 36mpbird 232 . 2  |-  ( ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  /\  A  =/=  0
)  ->  ( P  pCnt  A )  <_  ( P  pCnt  B ) )
3818, 37pm2.61dane 2714 1  |-  ( ( P  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( P  pCnt  A
)  <_  ( P  pCnt  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836    =/= wne 2591   class class class wbr 4384  (class class class)co 6218   0cc0 9425   RR*cxr 9560    <_ cle 9562   NNcn 10474   NN0cn0 10734   ZZcz 10803   QQcq 11123   ^cexp 12092    || cdvds 14011   Primecprime 14242    pCnt cpc 14385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-cnex 9481  ax-resscn 9482  ax-1cn 9483  ax-icn 9484  ax-addcl 9485  ax-addrcl 9486  ax-mulcl 9487  ax-mulrcl 9488  ax-mulcom 9489  ax-addass 9490  ax-mulass 9491  ax-distr 9492  ax-i2m1 9493  ax-1ne0 9494  ax-1rid 9495  ax-rnegex 9496  ax-rrecex 9497  ax-cnre 9498  ax-pre-lttri 9499  ax-pre-lttrn 9500  ax-pre-ltadd 9501  ax-pre-mulgt0 9502  ax-pre-sup 9503
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-reu 2753  df-rmo 2754  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4181  df-int 4217  df-iun 4262  df-br 4385  df-opab 4443  df-mpt 4444  df-tr 4478  df-eprel 4722  df-id 4726  df-po 4731  df-so 4732  df-fr 4769  df-we 4771  df-ord 4812  df-on 4813  df-lim 4814  df-suc 4815  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6180  df-ov 6221  df-oprab 6222  df-mpt2 6223  df-om 6622  df-1st 6721  df-2nd 6722  df-recs 6982  df-rdg 7016  df-1o 7070  df-2o 7071  df-oadd 7074  df-er 7251  df-en 7458  df-dom 7459  df-sdom 7460  df-fin 7461  df-sup 7838  df-pnf 9563  df-mnf 9564  df-xr 9565  df-ltxr 9566  df-le 9567  df-sub 9742  df-neg 9743  df-div 10146  df-nn 10475  df-2 10533  df-3 10534  df-n0 10735  df-z 10804  df-uz 11024  df-q 11124  df-rp 11162  df-fl 11851  df-mod 11920  df-seq 12034  df-exp 12093  df-cj 12957  df-re 12958  df-im 12959  df-sqrt 13093  df-abs 13094  df-dvds 14012  df-gcd 14170  df-prm 14243  df-pc 14386
This theorem is referenced by:  pcgcd1  14425  pc2dvds  14427  dvdsppwf1o  23602
  Copyright terms: Public domain W3C validator