MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcbc Unicode version

Theorem pcbc 13224
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcbc  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^ k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^
k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
Distinct variable groups:    P, k    k, N    k, K

Proof of Theorem pcbc
StepHypRef Expression
1 simp3 959 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  P  e.  Prime )
2 nnnn0 10184 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  NN0 )
323ad2ant1 978 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  NN0 )
4 faccl 11531 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
53, 4syl 16 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  e.  NN )
65nnzd 10330 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  e.  ZZ )
75nnne0d 10000 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  N
)  =/=  0 )
8 fznn0sub 11041 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  ( N  -  K )  e.  NN0 )
983ad2ant2 979 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  NN0 )
10 faccl 11531 . . . . 5  |-  ( ( N  -  K )  e.  NN0  ->  ( ! `
 ( N  -  K ) )  e.  NN )
119, 10syl 16 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  e.  NN )
12 elfznn0 11039 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  NN0 )
13123ad2ant2 979 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  NN0 )
14 faccl 11531 . . . . 5  |-  ( K  e.  NN0  ->  ( ! `
 K )  e.  NN )
1513, 14syl 16 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  e.  NN )
1611, 15nnmulcld 10003 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )
17 pcdiv 13181 . . 3  |-  ( ( P  e.  Prime  /\  (
( ! `  N
)  e.  ZZ  /\  ( ! `  N )  =/=  0 )  /\  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
)  e.  NN )  ->  ( P  pCnt  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )  =  ( ( P  pCnt  ( ! `  N ) )  -  ( P  pCnt  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
181, 6, 7, 16, 17syl121anc 1189 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )  =  ( ( P  pCnt  ( ! `  N ) )  -  ( P  pCnt  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
19 bcval2 11551 . . . 4  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `  N )  /  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) ) )
20193ad2ant2 979 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  _C  K
)  =  ( ( ! `  N )  /  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )
2120oveq2d 6056 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  ( P  pCnt  ( ( ! `  N
)  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) ) )
22 fzfid 11267 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( 1 ... N
)  e.  Fin )
23 nnre 9963 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  RR )
24233ad2ant1 978 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  RR )
2524adantr 452 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  N  e.  RR )
26 simpl3 962 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  P  e.  Prime )
27 prmnn 13037 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
2826, 27syl 16 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  P  e.  NN )
29 elfznn 11036 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
3029nnnn0d 10230 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN0 )
3130adantl 453 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  k  e.  NN0 )
3228, 31nnexpcld 11499 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( P ^
k )  e.  NN )
3325, 32nndivred 10004 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( N  / 
( P ^ k
) )  e.  RR )
3433flcld 11162 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  ZZ )
3534zcnd 10332 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( N  /  ( P ^ k ) ) )  e.  CC )
3613nn0red 10231 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  RR )
3724, 36resubcld 9421 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  RR )
3837adantr 452 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( N  -  K )  e.  RR )
3938, 32nndivred 10004 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( ( N  -  K )  / 
( P ^ k
) )  e.  RR )
4039flcld 11162 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  e.  ZZ )
4140zcnd 10332 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  e.  CC )
4236adantr 452 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  K  e.  RR )
4342, 32nndivred 10004 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( K  / 
( P ^ k
) )  e.  RR )
4443flcld 11162 . . . . . 6  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( K  /  ( P ^ k ) ) )  e.  ZZ )
4544zcnd 10332 . . . . 5  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( |_ `  ( K  /  ( P ^ k ) ) )  e.  CC )
4641, 45addcld 9063 . . . 4  |-  ( ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  /\  k  e.  ( 1 ... N ) )  ->  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) )  e.  CC )
4722, 35, 46fsumsub 12526 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^
k ) ) )  -  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )  =  (
sum_ k  e.  ( 1 ... N ) ( |_ `  ( N  /  ( P ^
k ) ) )  -  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  ( |_
`  ( K  / 
( P ^ k
) ) ) ) ) )
483nn0zd 10329 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ZZ )
49 uzid 10456 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
5048, 49syl 16 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  N ) )
51 pcfac 13223 . . . . 5  |-  ( ( N  e.  NN0  /\  N  e.  ( ZZ>= `  N )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  N ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  ( N  /  ( P ^
k ) ) ) )
523, 50, 1, 51syl3anc 1184 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  N )
)  =  sum_ k  e.  ( 1 ... N
) ( |_ `  ( N  /  ( P ^ k ) ) ) )
5313nn0ge0d 10233 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
0  <_  K )
5424, 36subge02d 9574 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( 0  <_  K  <->  ( N  -  K )  <_  N ) )
5553, 54mpbid 202 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  <_  N )
5613nn0zd 10329 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  K  e.  ZZ )
5748, 56zsubcld 10336 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  -  K
)  e.  ZZ )
58 eluz 10455 . . . . . . . . 9  |-  ( ( ( N  -  K
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  e.  (
ZZ>= `  ( N  -  K ) )  <->  ( N  -  K )  <_  N
) )
5957, 48, 58syl2anc 643 . . . . . . . 8  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( N  e.  (
ZZ>= `  ( N  -  K ) )  <->  ( N  -  K )  <_  N
) )
6055, 59mpbird 224 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  ( N  -  K
) ) )
61 pcfac 13223 . . . . . . 7  |-  ( ( ( N  -  K
)  e.  NN0  /\  N  e.  ( ZZ>= `  ( N  -  K
) )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  ( N  -  K
) ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) ) )
629, 60, 1, 61syl3anc 1184 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  ( N  -  K ) ) )  =  sum_ k  e.  ( 1 ... N ) ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) ) )
63 elfzuz3 11012 . . . . . . . 8  |-  ( K  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  K )
)
64633ad2ant2 979 . . . . . . 7  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  N  e.  ( ZZ>= `  K ) )
65 pcfac 13223 . . . . . . 7  |-  ( ( K  e.  NN0  /\  N  e.  ( ZZ>= `  K )  /\  P  e.  Prime )  ->  ( P  pCnt  ( ! `  K ) )  = 
sum_ k  e.  ( 1 ... N ) ( |_ `  ( K  /  ( P ^
k ) ) ) )
6613, 64, 1, 65syl3anc 1184 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( ! `  K )
)  =  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) )
6762, 66oveq12d 6058 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( P  pCnt  ( ! `  ( N  -  K ) ) )  +  ( P 
pCnt  ( ! `  K ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) ) )
6811nnzd 10330 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  e.  ZZ )
6911nnne0d 10000 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  ( N  -  K )
)  =/=  0 )
7015nnzd 10330 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  e.  ZZ )
7115nnne0d 10000 . . . . . 6  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ! `  K
)  =/=  0 )
72 pcmul 13180 . . . . . 6  |-  ( ( P  e.  Prime  /\  (
( ! `  ( N  -  K )
)  e.  ZZ  /\  ( ! `  ( N  -  K ) )  =/=  0 )  /\  ( ( ! `  K )  e.  ZZ  /\  ( ! `  K
)  =/=  0 ) )  ->  ( P  pCnt  ( ( ! `  ( N  -  K
) )  x.  ( ! `  K )
) )  =  ( ( P  pCnt  ( ! `  ( N  -  K ) ) )  +  ( P  pCnt  ( ! `  K ) ) ) )
731, 68, 69, 70, 71, 72syl122anc 1193 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  =  ( ( P  pCnt  ( ! `  ( N  -  K
) ) )  +  ( P  pCnt  ( ! `  K )
) ) )
7422, 41, 45fsumadd 12487 . . . . 5  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  (
( N  -  K
)  /  ( P ^ k ) ) )  +  ( |_
`  ( K  / 
( P ^ k
) ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( ( N  -  K )  /  ( P ^ k ) ) )  +  sum_ k  e.  ( 1 ... N
) ( |_ `  ( K  /  ( P ^ k ) ) ) ) )
7567, 73, 743eqtr4d 2446 . . . 4  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  (
( ! `  ( N  -  K )
)  x.  ( ! `
 K ) ) )  =  sum_ k  e.  ( 1 ... N
) ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )
7652, 75oveq12d 6058 . . 3  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( ( P  pCnt  ( ! `  N ) )  -  ( P 
pCnt  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) )  =  ( sum_ k  e.  ( 1 ... N
) ( |_ `  ( N  /  ( P ^ k ) ) )  -  sum_ k  e.  ( 1 ... N
) ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) ) )
7747, 76eqtr4d 2439 . 2  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  ->  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^
k ) ) )  -  ( ( |_
`  ( ( N  -  K )  / 
( P ^ k
) ) )  +  ( |_ `  ( K  /  ( P ^
k ) ) ) ) )  =  ( ( P  pCnt  ( ! `  N )
)  -  ( P 
pCnt  ( ( ! `
 ( N  -  K ) )  x.  ( ! `  K
) ) ) ) )
7818, 21, 773eqtr4d 2446 1  |-  ( ( N  e.  NN  /\  K  e.  ( 0 ... N )  /\  P  e.  Prime )  -> 
( P  pCnt  ( N  _C  K ) )  =  sum_ k  e.  ( 1 ... N ) ( ( |_ `  ( N  /  ( P ^ k ) ) )  -  ( ( |_ `  ( ( N  -  K )  /  ( P ^
k ) ) )  +  ( |_ `  ( K  /  ( P ^ k ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   RRcr 8945   0cc0 8946   1c1 8947    + caddc 8949    x. cmul 8951    <_ cle 9077    - cmin 9247    / cdiv 9633   NNcn 9956   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999   |_cfl 11156   ^cexp 11337   !cfa 11521    _C cbc 11548   sum_csu 12434   Primecprime 13034    pCnt cpc 13165
This theorem is referenced by:  pcbcctr  21013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-oi 7435  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-clim 12237  df-sum 12435  df-dvds 12808  df-gcd 12962  df-prm 13035  df-pc 13166
  Copyright terms: Public domain W3C validator