MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc2dvds Structured version   Unicode version

Theorem pc2dvds 14254
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc2dvds  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
Distinct variable groups:    A, p    B, p

Proof of Theorem pc2dvds
StepHypRef Expression
1 pcdvdstr 14251 . . . . 5  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  B ) )
21ancoms 453 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  B ) )
32ralrimiva 2878 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
433expia 1198 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
) ) )
5 oveq2 6290 . . . . . 6  |-  ( A  =  0  ->  (
p  pCnt  A )  =  ( p  pCnt  0 ) )
65breq1d 4457 . . . . 5  |-  ( A  =  0  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( p  pCnt  0 )  <_  (
p  pCnt  B )
) )
76ralbidv 2903 . . . 4  |-  ( A  =  0  ->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
)  <->  A. p  e.  Prime  ( p  pCnt  0 )  <_  ( p  pCnt  B ) ) )
8 breq1 4450 . . . 4  |-  ( A  =  0  ->  ( A  ||  B  <->  0  ||  B ) )
97, 8imbi12d 320 . . 3  |-  ( A  =  0  ->  (
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  ( p  pCnt  B )  ->  A  ||  B )  <->  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  0  ||  B ) ) )
10 gcddvds 14005 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1110simpld 459 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  A )
12 gcdcl 14007 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
1312nn0zd 10960 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
14 simpl 457 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
15 dvdsabsb 13857 . . . . . . . . . . . 12  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  gcd  B )  ||  ( abs `  A ) ) )
1613, 14, 15syl2anc 661 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  gcd  B )  ||  ( abs `  A ) ) )
1711, 16mpbid 210 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  ( abs `  A ) )
1817adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  ||  ( abs `  A ) )
19 simpl 457 . . . . . . . . . . . . 13  |-  ( ( A  =  0  /\  B  =  0 )  ->  A  =  0 )
2019necon3ai 2695 . . . . . . . . . . . 12  |-  ( A  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
21 gcdn0cl 14004 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
2220, 21sylan2 474 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  NN )
2322nnzd 10961 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  ZZ )
2422nnne0d 10576 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  =/=  0
)
25 nnabscl 13114 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  NN )
2625adantlr 714 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  NN )
2726nnzd 10961 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  ZZ )
28 dvdsval2 13843 . . . . . . . . . 10  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  ( abs `  A )  e.  ZZ )  ->  (
( A  gcd  B
)  ||  ( abs `  A )  <->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  ZZ ) )
2923, 24, 27, 28syl3anc 1228 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  ||  ( abs `  A )  <-> 
( ( abs `  A
)  /  ( A  gcd  B ) )  e.  ZZ ) )
3018, 29mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  ZZ )
31 nnre 10539 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  NN  ->  ( abs `  A )  e.  RR )
32 nngt0 10561 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  NN  ->  0  <  ( abs `  A
) )
3331, 32jca 532 . . . . . . . . . 10  |-  ( ( abs `  A )  e.  NN  ->  (
( abs `  A
)  e.  RR  /\  0  <  ( abs `  A
) ) )
34 nnre 10539 . . . . . . . . . . 11  |-  ( ( A  gcd  B )  e.  NN  ->  ( A  gcd  B )  e.  RR )
35 nngt0 10561 . . . . . . . . . . 11  |-  ( ( A  gcd  B )  e.  NN  ->  0  <  ( A  gcd  B
) )
3634, 35jca 532 . . . . . . . . . 10  |-  ( ( A  gcd  B )  e.  NN  ->  (
( A  gcd  B
)  e.  RR  /\  0  <  ( A  gcd  B ) ) )
37 divgt0 10406 . . . . . . . . . 10  |-  ( ( ( ( abs `  A
)  e.  RR  /\  0  <  ( abs `  A
) )  /\  (
( A  gcd  B
)  e.  RR  /\  0  <  ( A  gcd  B ) ) )  -> 
0  <  ( ( abs `  A )  / 
( A  gcd  B
) ) )
3833, 36, 37syl2an 477 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
0  <  ( ( abs `  A )  / 
( A  gcd  B
) ) )
3926, 22, 38syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  0  <  ( ( abs `  A
)  /  ( A  gcd  B ) ) )
40 elnnz 10870 . . . . . . . 8  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  NN  <->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )
4130, 39, 40sylanbrc 664 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  NN )
42 elnn1uz2 11154 . . . . . . 7  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  NN  <->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) ) )
4341, 42sylib 196 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) ) )
4410simprd 463 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  B )
4544adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  ||  B
)
46 breq1 4450 . . . . . . . . 9  |-  ( ( A  gcd  B )  =  ( abs `  A
)  ->  ( ( A  gcd  B )  ||  B 
<->  ( abs `  A
)  ||  B )
)
4745, 46syl5ibcom 220 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  =  ( abs `  A
)  ->  ( abs `  A )  ||  B
) )
4826nncnd 10548 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  CC )
4922nncnd 10548 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  CC )
50 ax-1cn 9546 . . . . . . . . . . 11  |-  1  e.  CC
5150a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  1  e.  CC )
5248, 49, 51, 24divmuld 10338 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  <->  ( ( A  gcd  B )  x.  1 )  =  ( abs `  A ) ) )
5349mulid1d 9609 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  x.  1 )  =  ( A  gcd  B ) )
5453eqeq1d 2469 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( A  gcd  B
)  x.  1 )  =  ( abs `  A
)  <->  ( A  gcd  B )  =  ( abs `  A ) ) )
5552, 54bitrd 253 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  <->  ( A  gcd  B )  =  ( abs `  A ) ) )
56 absdvdsb 13856 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  ( abs `  A ) 
||  B ) )
5756adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  ||  B  <->  ( abs `  A
)  ||  B )
)
5847, 55, 573imtr4d 268 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  ->  A  ||  B ) )
59 exprmfct 14103 . . . . . . . 8  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) )
60 simprl 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  p  e.  Prime )
6126adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  NN )
6261nnzd 10961 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  ZZ )
6361nnne0d 10576 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  =/=  0 )
6422adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( A  gcd  B )  e.  NN )
65 pcdiv 14228 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  (
( abs `  A
)  e.  ZZ  /\  ( abs `  A )  =/=  0 )  /\  ( A  gcd  B )  e.  NN )  -> 
( p  pCnt  (
( abs `  A
)  /  ( A  gcd  B ) ) )  =  ( ( p  pCnt  ( abs `  A ) )  -  ( p  pCnt  ( A  gcd  B ) ) ) )
6660, 62, 63, 64, 65syl121anc 1233 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  =  ( ( p  pCnt  ( abs `  A ) )  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
67 simplll 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  e.  ZZ )
68 zq 11184 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ZZ  ->  A  e.  QQ )
6967, 68syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  e.  QQ )
70 pcabs 14250 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  Prime  /\  A  e.  QQ )  ->  (
p  pCnt  ( abs `  A ) )  =  ( p  pCnt  A
) )
7160, 69, 70syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( abs `  A ) )  =  ( p  pCnt  A
) )
7271oveq1d 6297 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( abs `  A ) )  -  ( p  pCnt  ( A  gcd  B ) ) )  =  ( ( p  pCnt  A
)  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
7366, 72eqtrd 2508 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  =  ( ( p  pCnt  A )  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
74 simprr 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) )
7541adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  NN )
76 pcelnn 14245 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  NN )  -> 
( ( p  pCnt  ( ( abs `  A
)  /  ( A  gcd  B ) ) )  e.  NN  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) ) )
7760, 75, 76syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  (
( abs `  A
)  /  ( A  gcd  B ) ) )  e.  NN  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) ) )
7874, 77mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  e.  NN )
7973, 78eqeltrrd 2556 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  -  ( p 
pCnt  ( A  gcd  B ) ) )  e.  NN )
8060, 64pccld 14226 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e. 
NN0 )
8180nn0zd 10960 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e.  ZZ )
82 simplr 754 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  =/=  0 )
83 pczcl 14224 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( p  pCnt  A
)  e.  NN0 )
8460, 67, 82, 83syl12anc 1226 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  NN0 )
8584nn0zd 10960 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  ZZ )
86 znnsub 10905 . . . . . . . . . . . . . . 15  |-  ( ( ( p  pCnt  ( A  gcd  B ) )  e.  ZZ  /\  (
p  pCnt  A )  e.  ZZ )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  ( ( p 
pCnt  A )  -  (
p  pCnt  ( A  gcd  B ) ) )  e.  NN ) )
8781, 85, 86syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  ( ( p 
pCnt  A )  -  (
p  pCnt  ( A  gcd  B ) ) )  e.  NN ) )
8879, 87mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  < 
( p  pCnt  A
) )
8980nn0red 10849 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e.  RR )
9084nn0red 10849 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  RR )
9189, 90ltnled 9727 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  -.  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
9288, 91mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  ( A  gcd  B ) ) )
93 simpllr 758 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  B  e.  ZZ )
94 nprmdvds1 14104 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  Prime  ->  -.  p  ||  1 )
9594ad2antrl 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  p  ||  1 )
96 gcdid0 14014 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
9767, 96syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( A  gcd  0 )  =  ( abs `  A
) )
9897oveq2d 6298 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  0 ) )  =  ( ( abs `  A )  /  ( abs `  A ) ) )
9948adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  CC )
10099, 63dividd 10314 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( abs `  A ) )  =  1 )
10198, 100eqtrd 2508 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  0 ) )  =  1 )
102101breq2d 4459 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  0
) )  <->  p  ||  1
) )
10395, 102mtbird 301 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  p  ||  ( ( abs `  A )  /  ( A  gcd  0 ) ) )
104 oveq2 6290 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
105104oveq2d 6298 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  0  ->  (
( abs `  A
)  /  ( A  gcd  B ) )  =  ( ( abs `  A )  /  ( A  gcd  0 ) ) )
106105breq2d 4459 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  0  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  B
) )  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  0 ) ) ) )
10774, 106syl5ibcom 220 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( B  =  0  ->  p 
||  ( ( abs `  A )  /  ( A  gcd  0 ) ) ) )
108107necon3bd 2679 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( -.  p  ||  ( ( abs `  A )  /  ( A  gcd  0 ) )  ->  B  =/=  0 ) )
109103, 108mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  B  =/=  0 )
110 pczcl 14224 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  B
)  e.  NN0 )
11160, 93, 109, 110syl12anc 1226 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  NN0 )
112111nn0red 10849 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  RR )
113 lemin 11388 . . . . . . . . . . . . . 14  |-  ( ( ( p  pCnt  A
)  e.  RR  /\  ( p  pCnt  A )  e.  RR  /\  (
p  pCnt  B )  e.  RR )  ->  (
( p  pCnt  A
)  <_  if (
( p  pCnt  A
)  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
11490, 90, 112, 113syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  if (
( p  pCnt  A
)  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
115 pcgcd 14253 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
11660, 67, 93, 115syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
117116breq2d 4459 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  ( A  gcd  B
) )  <->  ( p  pCnt  A )  <_  if ( ( p  pCnt  A )  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) ) ) )
11890leidd 10115 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  A
) )
119118biantrurd 508 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
120114, 117, 1193bitr4rd 286 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
12192, 120mtbird 301 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
122121expr 615 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  B
) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
123122reximdva 2938 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( E. p  e.  Prime  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) )  ->  E. p  e.  Prime  -.  ( p  pCnt  A
)  <_  ( p  pCnt  B ) ) )
124 rexnal 2912 . . . . . . . . 9  |-  ( E. p  e.  Prime  -.  (
p  pCnt  A )  <_  ( p  pCnt  B
)  <->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
125123, 124syl6ib 226 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( E. p  e.  Prime  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) )  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
12659, 125syl5 32 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
)  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
12758, 126orim12d 836 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( ( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) )  ->  ( A  ||  B  \/  -.  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) ) )
12843, 127mpd 15 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  ||  B  \/  -.  A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )
) )
129128ord 377 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( -.  A  ||  B  ->  -.  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
130129con4d 105 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )  ->  A  ||  B ) )
131 2prm 14085 . . . . . 6  |-  2  e.  Prime
132 ne0i 3791 . . . . . 6  |-  ( 2  e.  Prime  ->  Prime  =/=  (/) )
133131, 132ax-mp 5 . . . . 5  |-  Prime  =/=  (/)
134 r19.2z 3917 . . . . 5  |-  ( ( Prime  =/=  (/)  /\  A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
) )  ->  E. p  e.  Prime  ( p  pCnt  0 )  <_  (
p  pCnt  B )
)
135133, 134mpan 670 . . . 4  |-  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  E. p  e.  Prime  ( p  pCnt  0 )  <_  (
p  pCnt  B )
)
136 id 22 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e. 
Prime )
137 zq 11184 . . . . . . . . . . . 12  |-  ( B  e.  ZZ  ->  B  e.  QQ )
138137adantl 466 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  QQ )
139 pcxcl 14236 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  B  e.  QQ )  ->  (
p  pCnt  B )  e.  RR* )
140136, 138, 139syl2anr 478 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  B )  e.  RR* )
141 pnfge 11335 . . . . . . . . . 10  |-  ( ( p  pCnt  B )  e.  RR*  ->  ( p  pCnt  B )  <_ +oo )
142140, 141syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  B )  <_ +oo )
143142biantrurd 508 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( +oo  <_  ( p  pCnt  B )  <->  ( ( p  pCnt  B
)  <_ +oo  /\ +oo  <_  ( p  pCnt  B
) ) ) )
144 pc0 14230 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  ( p 
pCnt  0 )  = +oo )
145144adantl 466 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  0 )  = +oo )
146145breq1d 4457 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  <-> +oo  <_  ( p  pCnt  B ) ) )
147 pnfxr 11317 . . . . . . . . 9  |- +oo  e.  RR*
148 xrletri3 11354 . . . . . . . . 9  |-  ( ( ( p  pCnt  B
)  e.  RR*  /\ +oo  e.  RR* )  ->  (
( p  pCnt  B
)  = +oo  <->  ( (
p  pCnt  B )  <_ +oo  /\ +oo  <_  ( p  pCnt  B )
) ) )
149140, 147, 148sylancl 662 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  B )  = +oo  <->  (
( p  pCnt  B
)  <_ +oo  /\ +oo  <_  ( p  pCnt  B
) ) ) )
150143, 146, 1493bitr4d 285 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  <->  ( p  pCnt  B )  = +oo )
)
151 pnfnre 9631 . . . . . . . . . 10  |- +oo  e/  RR
152151neli 2802 . . . . . . . . 9  |-  -. +oo  e.  RR
153 eleq1 2539 . . . . . . . . 9  |-  ( ( p  pCnt  B )  = +oo  ->  ( (
p  pCnt  B )  e.  RR  <-> +oo  e.  RR ) )
154152, 153mtbiri 303 . . . . . . . 8  |-  ( ( p  pCnt  B )  = +oo  ->  -.  (
p  pCnt  B )  e.  RR )
155110nn0red 10849 . . . . . . . . . . . 12  |-  ( ( p  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  B
)  e.  RR )
156155adantll 713 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  Prime )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( p  pCnt  B )  e.  RR )
157156an4s 824 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( p  e. 
Prime  /\  B  =/=  0
) )  ->  (
p  pCnt  B )  e.  RR )
158157expr 615 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( B  =/=  0  ->  ( p  pCnt  B )  e.  RR ) )
159158necon1bd 2685 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( -.  (
p  pCnt  B )  e.  RR  ->  B  = 
0 ) )
160154, 159syl5 32 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  B )  = +oo  ->  B  =  0 ) )
161150, 160sylbid 215 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  B  = 
0 ) )
162161rexlimdva 2955 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  B  =  0 ) )
163 0dvds 13858 . . . . . 6  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
164163adantl 466 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  ||  B  <->  B  =  0 ) )
165162, 164sylibrd 234 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  0  ||  B ) )
166135, 165syl5 32 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  0  ||  B ) )
1679, 130, 166pm2.61ne 2782 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  A
)  <_  ( p  pCnt  B )  ->  A  ||  B ) )
1684, 167impbid 191 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   (/)c0 3785   ifcif 3939   class class class wbr 4447   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    x. cmul 9493   +oocpnf 9621   RR*cxr 9623    < clt 9624    <_ cle 9625    - cmin 9801    / cdiv 10202   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   QQcq 11178   abscabs 13024    || cdivides 13840    gcd cgcd 13996   Primecprime 14069    pCnt cpc 14212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-fz 11669  df-fl 11893  df-mod 11960  df-seq 12071  df-exp 12130  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-dvds 13841  df-gcd 13997  df-prm 14070  df-pc 14213
This theorem is referenced by:  pc11  14255  pcz  14256  pcprmpw2  14257  pockthg  14276  pgpfi  16418  fislw  16438  gexexlem  16648  ablfac1c  16909  sqff1o  23181  chtublem  23211  bposlem6  23289
  Copyright terms: Public domain W3C validator