MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pc2dvds Structured version   Unicode version

Theorem pc2dvds 14413
Description: A characterization of divisibility in terms of prime count. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pc2dvds  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
Distinct variable groups:    A, p    B, p

Proof of Theorem pc2dvds
StepHypRef Expression
1 pcdvdstr 14410 . . . . 5  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B ) )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  B ) )
21ancoms 453 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )  /\  p  e.  Prime )  -> 
( p  pCnt  A
)  <_  ( p  pCnt  B ) )
32ralrimiva 2871 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  ||  B )  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
433expia 1198 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  ->  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
) ) )
5 oveq2 6304 . . . . . 6  |-  ( A  =  0  ->  (
p  pCnt  A )  =  ( p  pCnt  0 ) )
65breq1d 4466 . . . . 5  |-  ( A  =  0  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( p  pCnt  0 )  <_  (
p  pCnt  B )
) )
76ralbidv 2896 . . . 4  |-  ( A  =  0  ->  ( A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B
)  <->  A. p  e.  Prime  ( p  pCnt  0 )  <_  ( p  pCnt  B ) ) )
8 breq1 4459 . . . 4  |-  ( A  =  0  ->  ( A  ||  B  <->  0  ||  B ) )
97, 8imbi12d 320 . . 3  |-  ( A  =  0  ->  (
( A. p  e. 
Prime  ( p  pCnt  A
)  <_  ( p  pCnt  B )  ->  A  ||  B )  <->  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  0  ||  B ) ) )
10 gcddvds 14164 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  /\  ( A  gcd  B ) 
||  B ) )
1110simpld 459 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  A )
12 gcdcl 14166 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
1312nn0zd 10988 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
14 simpl 457 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  e.  ZZ )
15 dvdsabsb 14014 . . . . . . . . . . . 12  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  gcd  B )  ||  ( abs `  A ) ) )
1613, 14, 15syl2anc 661 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A  gcd  B )  ||  A  <->  ( A  gcd  B )  ||  ( abs `  A ) ) )
1711, 16mpbid 210 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  ( abs `  A ) )
1817adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  ||  ( abs `  A ) )
19 simpl 457 . . . . . . . . . . . . 13  |-  ( ( A  =  0  /\  B  =  0 )  ->  A  =  0 )
2019necon3ai 2685 . . . . . . . . . . . 12  |-  ( A  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
21 gcdn0cl 14163 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
2220, 21sylan2 474 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  NN )
2322nnzd 10989 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  ZZ )
2422nnne0d 10601 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  =/=  0
)
25 nnabscl 13169 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  NN )
2625adantlr 714 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  NN )
2726nnzd 10989 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  ZZ )
28 dvdsval2 14000 . . . . . . . . . 10  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  ( A  gcd  B )  =/=  0  /\  ( abs `  A )  e.  ZZ )  ->  (
( A  gcd  B
)  ||  ( abs `  A )  <->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  ZZ ) )
2923, 24, 27, 28syl3anc 1228 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  ||  ( abs `  A )  <-> 
( ( abs `  A
)  /  ( A  gcd  B ) )  e.  ZZ ) )
3018, 29mpbid 210 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  ZZ )
31 nnre 10563 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  NN  ->  ( abs `  A )  e.  RR )
32 nngt0 10585 . . . . . . . . . . 11  |-  ( ( abs `  A )  e.  NN  ->  0  <  ( abs `  A
) )
3331, 32jca 532 . . . . . . . . . 10  |-  ( ( abs `  A )  e.  NN  ->  (
( abs `  A
)  e.  RR  /\  0  <  ( abs `  A
) ) )
34 nnre 10563 . . . . . . . . . . 11  |-  ( ( A  gcd  B )  e.  NN  ->  ( A  gcd  B )  e.  RR )
35 nngt0 10585 . . . . . . . . . . 11  |-  ( ( A  gcd  B )  e.  NN  ->  0  <  ( A  gcd  B
) )
3634, 35jca 532 . . . . . . . . . 10  |-  ( ( A  gcd  B )  e.  NN  ->  (
( A  gcd  B
)  e.  RR  /\  0  <  ( A  gcd  B ) ) )
37 divgt0 10431 . . . . . . . . . 10  |-  ( ( ( ( abs `  A
)  e.  RR  /\  0  <  ( abs `  A
) )  /\  (
( A  gcd  B
)  e.  RR  /\  0  <  ( A  gcd  B ) ) )  -> 
0  <  ( ( abs `  A )  / 
( A  gcd  B
) ) )
3833, 36, 37syl2an 477 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  NN  /\  ( A  gcd  B )  e.  NN )  -> 
0  <  ( ( abs `  A )  / 
( A  gcd  B
) ) )
3926, 22, 38syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  0  <  ( ( abs `  A
)  /  ( A  gcd  B ) ) )
40 elnnz 10895 . . . . . . . 8  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  NN  <->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ZZ  /\  0  <  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )
4130, 39, 40sylanbrc 664 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( abs `  A )  / 
( A  gcd  B
) )  e.  NN )
42 elnn1uz2 11183 . . . . . . 7  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  NN  <->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) ) )
4341, 42sylib 196 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) ) )
4410simprd 463 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  ||  B )
4544adantr 465 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  ||  B
)
46 breq1 4459 . . . . . . . . 9  |-  ( ( A  gcd  B )  =  ( abs `  A
)  ->  ( ( A  gcd  B )  ||  B 
<->  ( abs `  A
)  ||  B )
)
4745, 46syl5ibcom 220 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  =  ( abs `  A
)  ->  ( abs `  A )  ||  B
) )
4826nncnd 10572 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( abs `  A )  e.  CC )
4922nncnd 10572 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  gcd  B )  e.  CC )
50 1cnd 9629 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  1  e.  CC )
5148, 49, 50, 24divmuld 10363 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  <->  ( ( A  gcd  B )  x.  1 )  =  ( abs `  A ) ) )
5249mulid1d 9630 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( ( A  gcd  B )  x.  1 )  =  ( A  gcd  B ) )
5352eqeq1d 2459 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( A  gcd  B
)  x.  1 )  =  ( abs `  A
)  <->  ( A  gcd  B )  =  ( abs `  A ) ) )
5451, 53bitrd 253 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  <->  ( A  gcd  B )  =  ( abs `  A ) ) )
55 absdvdsb 14013 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  ( abs `  A ) 
||  B ) )
5655adantr 465 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  ||  B  <->  ( abs `  A
)  ||  B )
)
5747, 54, 563imtr4d 268 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  =  1  ->  A  ||  B ) )
58 exprmfct 14262 . . . . . . . 8  |-  ( ( ( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
)  ->  E. p  e.  Prime  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) )
59 simprl 756 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  p  e.  Prime )
6026adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  NN )
6160nnzd 10989 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  ZZ )
6260nnne0d 10601 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  =/=  0 )
6322adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( A  gcd  B )  e.  NN )
64 pcdiv 14387 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  (
( abs `  A
)  e.  ZZ  /\  ( abs `  A )  =/=  0 )  /\  ( A  gcd  B )  e.  NN )  -> 
( p  pCnt  (
( abs `  A
)  /  ( A  gcd  B ) ) )  =  ( ( p  pCnt  ( abs `  A ) )  -  ( p  pCnt  ( A  gcd  B ) ) ) )
6559, 61, 62, 63, 64syl121anc 1233 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  =  ( ( p  pCnt  ( abs `  A ) )  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
66 simplll 759 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  e.  ZZ )
67 zq 11213 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  ZZ  ->  A  e.  QQ )
6866, 67syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  e.  QQ )
69 pcabs 14409 . . . . . . . . . . . . . . . . . 18  |-  ( ( p  e.  Prime  /\  A  e.  QQ )  ->  (
p  pCnt  ( abs `  A ) )  =  ( p  pCnt  A
) )
7059, 68, 69syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( abs `  A ) )  =  ( p  pCnt  A
) )
7170oveq1d 6311 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( abs `  A ) )  -  ( p  pCnt  ( A  gcd  B ) ) )  =  ( ( p  pCnt  A
)  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
7265, 71eqtrd 2498 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  =  ( ( p  pCnt  A )  -  ( p 
pCnt  ( A  gcd  B ) ) ) )
73 simprr 757 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) )
7441adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  NN )
75 pcelnn 14404 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  NN )  -> 
( ( p  pCnt  ( ( abs `  A
)  /  ( A  gcd  B ) ) )  e.  NN  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) ) )
7659, 74, 75syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  (
( abs `  A
)  /  ( A  gcd  B ) ) )  e.  NN  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  B ) ) ) )
7773, 76mpbird 232 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( ( abs `  A )  / 
( A  gcd  B
) ) )  e.  NN )
7872, 77eqeltrrd 2546 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  -  ( p 
pCnt  ( A  gcd  B ) ) )  e.  NN )
7959, 63pccld 14385 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e. 
NN0 )
8079nn0zd 10988 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e.  ZZ )
81 simplr 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  A  =/=  0 )
82 pczcl 14383 . . . . . . . . . . . . . . . . 17  |-  ( ( p  e.  Prime  /\  ( A  e.  ZZ  /\  A  =/=  0 ) )  -> 
( p  pCnt  A
)  e.  NN0 )
8359, 66, 81, 82syl12anc 1226 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  NN0 )
8483nn0zd 10988 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  ZZ )
85 znnsub 10931 . . . . . . . . . . . . . . 15  |-  ( ( ( p  pCnt  ( A  gcd  B ) )  e.  ZZ  /\  (
p  pCnt  A )  e.  ZZ )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  ( ( p 
pCnt  A )  -  (
p  pCnt  ( A  gcd  B ) ) )  e.  NN ) )
8680, 84, 85syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  ( ( p 
pCnt  A )  -  (
p  pCnt  ( A  gcd  B ) ) )  e.  NN ) )
8778, 86mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  < 
( p  pCnt  A
) )
8879nn0red 10874 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  e.  RR )
8983nn0red 10874 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  e.  RR )
9088, 89ltnled 9749 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  ( A  gcd  B ) )  <  ( p  pCnt  A )  <->  -.  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
9187, 90mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  ( A  gcd  B ) ) )
92 simpllr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  B  e.  ZZ )
93 nprmdvds1 14263 . . . . . . . . . . . . . . . . . . 19  |-  ( p  e.  Prime  ->  -.  p  ||  1 )
9493ad2antrl 727 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  p  ||  1 )
95 gcdid0 14173 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  ZZ  ->  ( A  gcd  0 )  =  ( abs `  A
) )
9666, 95syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( A  gcd  0 )  =  ( abs `  A
) )
9796oveq2d 6312 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  0 ) )  =  ( ( abs `  A )  /  ( abs `  A ) ) )
9848adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( abs `  A )  e.  CC )
9998, 62dividd 10339 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( abs `  A ) )  =  1 )
10097, 99eqtrd 2498 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( abs `  A
)  /  ( A  gcd  0 ) )  =  1 )
101100breq2d 4468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  0
) )  <->  p  ||  1
) )
10294, 101mtbird 301 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  p  ||  ( ( abs `  A )  /  ( A  gcd  0 ) ) )
103 oveq2 6304 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  =  0  ->  ( A  gcd  B )  =  ( A  gcd  0
) )
104103oveq2d 6312 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  0  ->  (
( abs `  A
)  /  ( A  gcd  B ) )  =  ( ( abs `  A )  /  ( A  gcd  0 ) ) )
105104breq2d 4468 . . . . . . . . . . . . . . . . . . 19  |-  ( B  =  0  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  B
) )  <->  p  ||  (
( abs `  A
)  /  ( A  gcd  0 ) ) ) )
10673, 105syl5ibcom 220 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( B  =  0  ->  p 
||  ( ( abs `  A )  /  ( A  gcd  0 ) ) ) )
107106necon3bd 2669 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  ( -.  p  ||  ( ( abs `  A )  /  ( A  gcd  0 ) )  ->  B  =/=  0 ) )
108102, 107mpd 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  B  =/=  0 )
109 pczcl 14383 . . . . . . . . . . . . . . . 16  |-  ( ( p  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  B
)  e.  NN0 )
11059, 92, 108, 109syl12anc 1226 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  NN0 )
111110nn0red 10874 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  B )  e.  RR )
112 lemin 11417 . . . . . . . . . . . . . 14  |-  ( ( ( p  pCnt  A
)  e.  RR  /\  ( p  pCnt  A )  e.  RR  /\  (
p  pCnt  B )  e.  RR )  ->  (
( p  pCnt  A
)  <_  if (
( p  pCnt  A
)  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
11389, 89, 111, 112syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  if (
( p  pCnt  A
)  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
114 pcgcd 14412 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
11559, 66, 92, 114syl3anc 1228 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  ( A  gcd  B ) )  =  if ( ( p 
pCnt  A )  <_  (
p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p 
pCnt  B ) ) )
116115breq2d 4468 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  ( A  gcd  B
) )  <->  ( p  pCnt  A )  <_  if ( ( p  pCnt  A )  <_  ( p  pCnt  B ) ,  ( p  pCnt  A ) ,  ( p  pCnt  B ) ) ) )
11789leidd 10140 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
p  pCnt  A )  <_  ( p  pCnt  A
) )
118117biantrurd 508 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( (
p  pCnt  A )  <_  ( p  pCnt  A
)  /\  ( p  pCnt  A )  <_  (
p  pCnt  B )
) ) )
119113, 116, 1183bitr4rd 286 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  (
( p  pCnt  A
)  <_  ( p  pCnt  B )  <->  ( p  pCnt  A )  <_  (
p  pCnt  ( A  gcd  B ) ) ) )
12091, 119mtbird 301 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  (
p  e.  Prime  /\  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) ) ) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
121120expr 615 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0 )  /\  p  e.  Prime )  ->  (
p  ||  ( ( abs `  A )  / 
( A  gcd  B
) )  ->  -.  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
122121reximdva 2932 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( E. p  e.  Prime  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) )  ->  E. p  e.  Prime  -.  ( p  pCnt  A
)  <_  ( p  pCnt  B ) ) )
123 rexnal 2905 . . . . . . . . 9  |-  ( E. p  e.  Prime  -.  (
p  pCnt  A )  <_  ( p  pCnt  B
)  <->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) )
124122, 123syl6ib 226 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( E. p  e.  Prime  p  ||  ( ( abs `  A
)  /  ( A  gcd  B ) )  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
12558, 124syl5 32 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
)  ->  -.  A. p  e.  Prime  ( p  pCnt  A )  <_  ( p  pCnt  B ) ) )
12657, 125orim12d 838 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( (
( ( abs `  A
)  /  ( A  gcd  B ) )  =  1  \/  (
( abs `  A
)  /  ( A  gcd  B ) )  e.  ( ZZ>= `  2
) )  ->  ( A  ||  B  \/  -.  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) ) )
12743, 126mpd 15 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A  ||  B  \/  -.  A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )
) )
128127ord 377 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( -.  A  ||  B  ->  -.  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
129128con4d 105 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  A  =/=  0
)  ->  ( A. p  e.  Prime  ( p 
pCnt  A )  <_  (
p  pCnt  B )  ->  A  ||  B ) )
130 2prm 14244 . . . . . 6  |-  2  e.  Prime
131130ne0ii 3800 . . . . 5  |-  Prime  =/=  (/)
132 r19.2z 3921 . . . . 5  |-  ( ( Prime  =/=  (/)  /\  A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
) )  ->  E. p  e.  Prime  ( p  pCnt  0 )  <_  (
p  pCnt  B )
)
133131, 132mpan 670 . . . 4  |-  ( A. p  e.  Prime  ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  E. p  e.  Prime  ( p  pCnt  0 )  <_  (
p  pCnt  B )
)
134 id 22 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e. 
Prime )
135 zq 11213 . . . . . . . . . . . 12  |-  ( B  e.  ZZ  ->  B  e.  QQ )
136135adantl 466 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  B  e.  QQ )
137 pcxcl 14395 . . . . . . . . . . 11  |-  ( ( p  e.  Prime  /\  B  e.  QQ )  ->  (
p  pCnt  B )  e.  RR* )
138134, 136, 137syl2anr 478 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  B )  e.  RR* )
139 pnfge 11364 . . . . . . . . . 10  |-  ( ( p  pCnt  B )  e.  RR*  ->  ( p  pCnt  B )  <_ +oo )
140138, 139syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  B )  <_ +oo )
141140biantrurd 508 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( +oo  <_  ( p  pCnt  B )  <->  ( ( p  pCnt  B
)  <_ +oo  /\ +oo  <_  ( p  pCnt  B
) ) ) )
142 pc0 14389 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  ( p 
pCnt  0 )  = +oo )
143142adantl 466 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( p  pCnt  0 )  = +oo )
144143breq1d 4466 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  <-> +oo  <_  ( p  pCnt  B ) ) )
145 pnfxr 11346 . . . . . . . . 9  |- +oo  e.  RR*
146 xrletri3 11383 . . . . . . . . 9  |-  ( ( ( p  pCnt  B
)  e.  RR*  /\ +oo  e.  RR* )  ->  (
( p  pCnt  B
)  = +oo  <->  ( (
p  pCnt  B )  <_ +oo  /\ +oo  <_  ( p  pCnt  B )
) ) )
147138, 145, 146sylancl 662 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  B )  = +oo  <->  (
( p  pCnt  B
)  <_ +oo  /\ +oo  <_  ( p  pCnt  B
) ) ) )
148141, 144, 1473bitr4d 285 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  <->  ( p  pCnt  B )  = +oo )
)
149 pnfnre 9652 . . . . . . . . . 10  |- +oo  e/  RR
150149neli 2792 . . . . . . . . 9  |-  -. +oo  e.  RR
151 eleq1 2529 . . . . . . . . 9  |-  ( ( p  pCnt  B )  = +oo  ->  ( (
p  pCnt  B )  e.  RR  <-> +oo  e.  RR ) )
152150, 151mtbiri 303 . . . . . . . 8  |-  ( ( p  pCnt  B )  = +oo  ->  -.  (
p  pCnt  B )  e.  RR )
153109nn0red 10874 . . . . . . . . . . . 12  |-  ( ( p  e.  Prime  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  -> 
( p  pCnt  B
)  e.  RR )
154153adantll 713 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  p  e.  Prime )  /\  ( B  e.  ZZ  /\  B  =/=  0 ) )  ->  ( p  pCnt  B )  e.  RR )
155154an4s 826 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( p  e. 
Prime  /\  B  =/=  0
) )  ->  (
p  pCnt  B )  e.  RR )
156155expr 615 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( B  =/=  0  ->  ( p  pCnt  B )  e.  RR ) )
157156necon1bd 2675 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( -.  (
p  pCnt  B )  e.  RR  ->  B  = 
0 ) )
158152, 157syl5 32 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  B )  = +oo  ->  B  =  0 ) )
159148, 158sylbid 215 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  p  e.  Prime )  ->  ( ( p 
pCnt  0 )  <_ 
( p  pCnt  B
)  ->  B  = 
0 ) )
160159rexlimdva 2949 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  B  =  0 ) )
161 0dvds 14015 . . . . . 6  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
162161adantl 466 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( 0  ||  B  <->  B  =  0 ) )
163160, 162sylibrd 234 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( E. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  0  ||  B ) )
164133, 163syl5 32 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  0
)  <_  ( p  pCnt  B )  ->  0  ||  B ) )
1659, 129, 164pm2.61ne 2772 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A. p  e. 
Prime  ( p  pCnt  A
)  <_  ( p  pCnt  B )  ->  A  ||  B ) )
1664, 165impbid 191 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  ||  B  <->  A. p  e.  Prime  (
p  pCnt  A )  <_  ( p  pCnt  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   (/)c0 3793   ifcif 3944   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    x. cmul 9514   +oocpnf 9642   RR*cxr 9644    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   2c2 10606   NN0cn0 10816   ZZcz 10885   ZZ>=cuz 11106   QQcq 11207   abscabs 13078    || cdvds 13997    gcd cgcd 14155   Primecprime 14228    pCnt cpc 14371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-fz 11698  df-fl 11931  df-mod 11999  df-seq 12110  df-exp 12169  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-dvds 13998  df-gcd 14156  df-prm 14229  df-pc 14372
This theorem is referenced by:  pc11  14414  pcz  14415  pcprmpw2  14416  pockthg  14435  pgpfi  16751  fislw  16771  gexexlem  16984  ablfac1c  17248  sqff1o  23581  chtublem  23611  bposlem6  23689
  Copyright terms: Public domain W3C validator